
Foundations of Computer Science
Release 0.5

Amir Kamil and Chris Peikert

Dec 29, 2024

CONTENTS

I Algorithms 1

1 Introduction 2
1.1 Text Objectives . 2
1.2 Tools for Abstraction . 3
1.3 The First Algorithm: Euclid’s GCD . 4

2 The Potential Method 7
2.1 A Potential Function for Euclid’s Algorithm . 10

3 Divide and Conquer 13
3.1 The Master Theorem . 14
3.2 Integer Multiplication . 16
3.3 The Closest-Pair Problem . 19

4 Dynamic Programming 25
4.1 Implementation Strategies . 25
4.2 Weighted Task Selection . 28
4.3 Longest Increasing Subsequence . 31
4.4 Longest Common Subsequence . 33
4.5 All-Pairs Shortest Paths . 38

5 Greedy Algorithms 41

II Computability 46

6 Introduction to Computability 47
6.1 Formal Languages . 47
6.2 Overview of Automata . 50

7 Finite Automata 53
7.1 Formal Definition . 57

8 Turing Machines 61
8.1 The Language of a Turing Machine . 85
8.2 Decidable Languages . 87
8.3 Equivalent Models . 89

9 Diagonalization 92
9.1 Countable Sets . 92
9.2 Uncountable Sets . 95

i

9.3 The Existence of an Undecidable Language . 97

10 “Natural” Undecidable Problems 100
10.1 Code as Input . 100
10.2 The Barber Language . 101
10.3 The Acceptance Language and Simulation . 102
10.4 The Halting Problem . 104

11 Turing Reductions 106
11.1 The Halts-on-Empty Problem . 108
11.2 More Undecidable Languages and Turing Reductions . 110
11.3 Wang Tiling . 113

12 Recognizability 123
12.1 Unrecognizable Languages . 126
12.2 Dovetailing . 127

13 Rice’s Theorem 130
13.1 Rice’s Theorem and Program Analysis . 133

III Complexity 136

14 Introduction to Complexity 137
14.1 Polynomial Time and the Class P . 138
14.2 Examples of Efficient Verification . 140
14.3 Efficient Verifiers and the Class NP . 143
14.4 P Versus NP . 147

15 Satisfiability and the Cook-Levin Theorem 149

16 Proof of the Cook-Levin Theorem 152
16.1 Configurations and Tableaus . 152
16.2 Constructing the Formula . 153
16.3 Conclusion . 160

17 NP-Completeness 162
17.1 Polynomial-Time Mapping Reductions . 162
17.2 NP-Hardness and NP-Completeness . 164
17.3 Resolving P versus NP . 165

18 More NP-Complete Problems 169
18.1 3SAT . 169
18.2 Clique . 174
18.3 Vertex Cover . 177
18.4 Set Cover . 182
18.5 Hamiltonian Cycle . 184
18.6 Concluding Remarks . 187

19 Search Problems and Search-to-Decision Reductions 188

20 Approximation Algorithms 192
20.1 Minimum Vertex Cover . 193
20.2 Maximum Cut . 196
20.3 Knapsack . 199
20.4 Other Approaches to NP-Hard Problems . 201

ii

IV Randomness 202

21 Randomized Algorithms 203
21.1 Review of Probability . 204
21.2 Randomized Approximation Algorithms . 214
21.3 Quick Sort . 219
21.4 Skip Lists . 222

22 Monte Carlo Methods and Concentration Bounds 228
22.1 Variance and Chebyshev’s Inequality . 229
22.2 Hoeffding’s Inequality . 234
22.3 Polling . 236
22.4 Load Balancing . 238

V Cryptography 241

23 Introduction to Cryptography 242
23.1 Review of Modular Arithmetic . 243
23.2 One-time Pad . 248

24 Diffie-Hellman Key Exchange 253

25 RSA 256
25.1 RSA Signatures . 260
25.2 Quantum Computers and Cryptography . 261

VI Supplemental Material 262

26 Supplemental: Algorithms 263
26.1 Non-master-theorem Recurrences . 263

27 Supplemental: Computability 265
27.1 Applying Rice’s Theorem . 265
27.2 Computable Functions and Kolmogorov Complexity . 267

28 Supplemental: Randomness 270
28.1 Primality Testing . 270
28.2 Multiplicative Chernoff Bounds . 274
28.3 Probabilistic Complexity Classes . 282
28.4 Amplification for Two-Sided-Error Algorithms . 287

VII Appendix 290

29 Appendix 291
29.1 Proof of the Master Theorem . 291
29.2 Alternative Analysis of Quick Sort . 296
29.3 Proof of the Simplified Multiplicative Chernoff Bounds . 300
29.4 Proof of the Upper-Tail Hoeffding’s Inequality . 302
29.5 General Case of Hoeffding’s Inequality . 306

iii

VIII About 310

30 About 311

Index 312

iv

Part I

Algorithms

1

CHAPTER

ONE

INTRODUCTION

Every complex problem has a solution that is clear, simple, and wrong. — H. L. Mencken

Welcome to Foundations of Computer Science! This text covers foundational aspects of Computer Science that will
help you reason about any computing task. In particular, we are concerned with the following with respect to problem
solving:

• What are common, effective approaches to designing an algorithm?

• Given an algorithm, how do we reason about whether it is correct and how efficient it is?

• Are there limits to what problems we can solve with computers, and how do we identify whether a particular
problem is solvable?

• What problems are efficiently solvable, and how do we determine whether a particular problem is?

• For problems that seem not to be solvable efficiently, can we efficiently find approximate solutions, and what are
common techniques for doing so?

• Can randomness help us in solving problems?

• How can we exploit problems that are not efficiently solvable to build secure cryptography algorithms?

In order to answer these questions, we must define formal mathematical models and apply a proof-based methodology.
Thus, this text will feel much like a math text, but we apply the approach directly to widely applicable problems in
Computer Science.

As an example, how can we demonstrate that there is no general algorithm for determining whether or not two programs
have the same functionality? A simple but incorrect approach would be to analyze all possible algorithms, and show
that none can work. However, there are infinitely many possible algorithms, so we have no hope of this approach
working. Instead, we need to construct a model that captures the notion of what is computable by any algorithm, and
use that to demonstrate that no such algorithm exists.

1.1 Text Objectives

The main purpose of this text is to give you the tools to approach computational problems you’ve never seen before.
Rather than being given a particular algorithm or data structure to implement, approaching a new problem requires
reasoning about whether the problem is solvable, how to relate it to problems that you’ve seen before, what algorithmic
techniques are applicable, whether the algorithm you come up with is correct, and how efficient the resulting algorithm
is. These are all steps that must be taken prior to actually writing code to implement a solution, and these steps are
independent of your choice of programming language or framework.

Thus, in a sense, the fact that you will not have to write code (though you are free to do so if you like) is a feature,
not a bug. We focus on the prerequisite algorithmic reasoning required before writing any code, and this reasoning is
independent of the implementation details. If you were to implement all the algorithms you design in this course, the
workload would be far greater, and it would only replicate the coding practice you get in your programming courses.

2

Foundations of Computer Science, Release 0.5

Instead, we focus on the aspects of problem solving that you have not yet had much experience in. The training we
give you in this text will make you a better programmer, as algorithmic design and analysis is crucial to effective
programming. This text also provides a solid framework for further exploration of theoretical Computer Science,
should you wish to pursue that path. However, you will find the material here useful regardless of which subfields of
Computer Science you decide to study.

As an example, suppose your boss tells you that you need to make a business trip to visit several cities, and you must
minimize the cost of visiting all those cities. This is an example of the classic traveling salesperson problem1, and you
may have heard that it is an intractable problem. What exactly does that mean? Does it mean that it cannot be solved
at all? What if we change the problem so that you don’t have to minimize the cost, but instead must fit the cost within
a given budget (say $2000)? Does this make the problem any easier? What if we don’t require that the total cost be
minimized, but that it merely needs to be within a factor of two of the optimal cost?

Before we can reason about the total cost of a trip, we need to know how much it costs to travel between two consecutive
destinations in the trip. Suppose we are traveling by air. There may be no direct flight between those two cities, or it
might be very expensive. To help us keep our budget down, we need to figure out what the cheapest itinerary between
those two cities is, considering intermediate layover stops. And since we don’t know a priori in what order we will visit
all the cities, we need to know the cheapest itineraries between all pairs of cities. This is an instance of the all-pairs
shortest path problem2. Is this an “efficiently solvable” problem, and if so, what algorithmic techniques can we use to
find a solution?

We will consider both of the problems above in this text. We will learn what it means for a problem to be solvable or
not (and how to prove this), what it means for a problem to be tractable or not (and how to prove that it is, or give strong
evidence that it is not), and techniques for designing and analyzing algorithms for tractable problems.

1.2 Tools for Abstraction

Abstraction is a core principle in Computer Science, allowing us to reason about and use complex systems without
needing to pay attention to implementation details. As mentioned earlier, the focus of this text is on reasoning about
problems and algorithms independently of specific implementations. To do so, we need appropriate abstract models
that are applicable to any programming language or system architecture.

Our abstract model for expressing algorithms is pseudocode, which describes the steps in the algorithm at a high level
without implementation details. As an example, the following is a pseudocode description of the Floyd-Warshall
algorithm (page 38), which we will discuss later:

Algorithm 1 (Floyd-Warshall)

Input: a weighted directed graph
Output: all-pairs (shortest-path) distances in the graph

function FloydWarshall(𝐺 = (𝑉,𝐸))
for all 𝑢, 𝑣 ∈ 𝑉 do

𝑑0(𝑢, 𝑣) = weight(𝑢, 𝑣)
for 𝑘 = 1 to |𝑉 | do

for all 𝑢, 𝑣 ∈ 𝑉 do
𝑑𝑘(𝑢, 𝑣) = min{𝑑𝑘−1(𝑢, 𝑣), 𝑑𝑘−1(𝑢, 𝑘) + 𝑑𝑘−1(𝑘, 𝑣)}

return 𝑑|𝑉 |

This description is independent of how the graph 𝐺 is represented, or the two-dimensional matrices 𝑑𝑖, or the specific
syntax of the loops. Yet it should be clear to the intended reader what each step of the algorithm does. Expressing this
algorithm in a real-world programming language like C++ would only add unnecessary syntactic and implementation

1 https://en.wikipedia.org/wiki/Travelling_salesman_problem
2 https://en.wikipedia.org/wiki/Shortest_path_problem#All-pairs_shortest_paths

1.2. Tools for Abstraction 3

https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Shortest_path_problem#All-pairs_shortest_paths
https://en.wikipedia.org/wiki/Shortest_path_problem#All-pairs_shortest_paths

Foundations of Computer Science, Release 0.5

details that are an artifact of the chosen language and data structures, and not intrinsic to the algorithm itself. Instead,
pseudocode gives us a simple means of expressing an algorithm that facilitates understanding and reasoning about its
core elements.

We also need abstractions for reasoning about the efficiency of algorithms. The actual real-world running time and
space/memory usage of a program depend on many factors, including choice of language and data structures, available
compiler optimizations, and characteristics of the underlying hardware. Again, these are not intrinsic to an algorithm
itself. Instead, we focus not on concrete real-world efficiency, but on how the algorithm’s running time (and sometime
memory usage) scales with respect to the input size. Specifically, we focus on time complexity in terms of:

1. the number of basic operations performed as a function of input size,

2. asymptotically, i.e., as the input size grows,

3. ignoring leading constants,

4. over worst-case inputs.

We measure space complexity in a similar manner, but with respect to the number of memory cells used, rather than the
number of basic operations performed. These measures of time and space complexity allow us to evaluate algorithms
in the abstract, rather than with respect to a particular implementation. This is not to say that absolute performance is
irrelevant. Rather, the asymptotic complexity gives us a “higher-level” view of an algorithm. An algorithm with poor
asymptotic time complexity will be inefficient when run on large inputs, regardless of how good the implementation is.

Later in the text, we will also reason about the intrinsic solvability of a problem. We will see how to express problems
in the abstract (e.g. as languages and decision problems), and we will examine a simple model of computation (Turing
machines) that captures the essence of computation.

1.3 The First Algorithm: Euclid’s GCD

One of the oldest known algorithms is Euclid’s algorithm for computing the greatest common divisor (GCD) of two
integers.

Definition 2 (Divides, Divisor) Let 𝑥 ∈ Z be an integer. We say that an integer 𝑑 divides 𝑥 (and is a divisor of
𝑥) if there exists an integer 𝑘 ∈ Z such that 𝑑 · 𝑘 = 𝑥. (When 𝑑 ̸= 0, this is equivalent to 𝑥/𝑑 being an integer.)

Whether 𝑑 divides 𝑥 is not affected by their signs (positive, negative, or zero), so from now on we restrict our attention
to nonnegative integers and divisors.

Note: 𝑑 = 1 divides any integer 𝑥, by taking 𝑘 = 𝑥 (i.e., 1 · 𝑥 = 𝑥), and 𝑑 = 𝑥 is the largest divisor of 𝑥 when 𝑥 > 0.
Take care with the special cases involving zero: any integer 𝑑 divides 𝑥 = 0, because 𝑑 · 0 = 0. But 𝑑 = 0 does not
divide anything except 𝑥 = 0, because 𝑑 · 𝑘 = 0 · 𝑘 = 0 for every 𝑘.

Definition 3 (Greatest Common Divisor) Let 𝑥, 𝑦 ∈ Z be nonnegative integers. A common divisor of 𝑥, 𝑦 is an
integer that divides both of them, and their greatest common divisor, denoted gcd(𝑥, 𝑦), is the largest such integer.

For example, gcd(21, 9) = 3 and gcd(121, 5) = 1. Also, gcd(7, 7) = gcd(7, 0) = 7. (Make sure you understand
why!) If gcd(𝑥, 𝑦) = 1, we say that 𝑥 and 𝑦 are coprime. So, 121 and 5 are coprime, but 21 and 9 are not coprime (nor
are 7 and 7, nor are 7 and 0).

Take note: as long as 𝑥, 𝑦 are not both zero, gcd(𝑥, 𝑦) is well defined, because there is at least one common divisor
𝑑 = 1, and no common divisor can be greater than max(𝑥, 𝑦). However, gcd(0, 0) is not well defined, because every
integer divides zero, and there is no largest integer. In this case, it is convenient to define gcd(0, 0) = 0, so that
gcd(𝑥, 0) = 𝑥 for all 𝑥.

So far we have just defined the GCD mathematically. Now we consider the computational question: given two integers,
can we compute their GCD, and how efficiently can we do so? As we will see later, this problem turns out to be very
important in cryptography and other fields.

1.3. The First Algorithm: Euclid’s GCD 4

Foundations of Computer Science, Release 0.5

Here is a naïve, “brute-force” algorithm for computing the GCD of given integers 𝑥 ≥ 𝑦 (we adopt this requirement for
convenience, since we can swap the values without changing the answer): try every integer from 𝑦 down to 1, check
whether it divides both 𝑥 and 𝑦, and return the first (and hence largest) such number that does. The algorithm is clearly
correct, because the GCD of 𝑥 and 𝑦 cannot exceed 𝑦, and the algorithm returns the first (and hence largest) value that
actually divides both arguments.

Algorithm 4 (Naïve GCD)

Input: integers 𝑥 ≥ 𝑦 ≥ 0, not both zero
Output: their greatest common divisor gcd(𝑥, 𝑦)

function NaiveGCD(𝑥, 𝑦)
for 𝑑 = 𝑦 down to 1 do

if 𝑑 divides both 𝑥 and 𝑦 then return 𝑑

Here, the mod operation computes the remainder of the first operand divided by the second. For example, 9 mod 6 =
3 since 9 = 6 ·1+3, and 9 mod 3 = 0 since 9 = 3 ·3+0. So, the result of 𝑥 mod 𝑑 is an integer in the range [0, 𝑑−1],
and in particular 𝑥 mod 1 = 0. The result is not defined when 𝑑 is 0.

How efficient is the above algorithm? In the worst case, it performs two mod operations for every integer in the range
[1, 𝑦]. Using asymptotic notation, the worst-case number of mod operations is therefore Θ(𝑦). (Recall that this Θ(𝑦)
notation means: between 𝑐𝑦 and 𝑐′𝑦 for some positive constants 𝑐, 𝑐′, for all “large enough” 𝑦.)

Can we do better?

Here is a key observation: if 𝑑 divides both 𝑥 and 𝑦, then it also divides 𝑥 −𝑚𝑦 for any integer 𝑚 ∈ Z. Here is the
proof: since 𝑥 = 𝑑 · 𝑎 and 𝑦 = 𝑑 · 𝑏 for some integers 𝑎, 𝑏 ∈ Z, then 𝑥−𝑚𝑦 = 𝑑𝑎−𝑚𝑑𝑏 = 𝑑 · (𝑎−𝑚𝑏), so 𝑑 divides
𝑥−𝑚𝑦 as well. By the same kind of reasoning, the converse holds too: if some 𝑑′ divides both 𝑥−𝑚𝑦 and 𝑦, it also
divides 𝑥. Thus, the common divisors of 𝑥 and 𝑦 are exactly the common divisors of 𝑥 − 𝑚𝑦 and 𝑦, and hence the
greatest common divisors of these two pairs are equal. We have just proved the following:

Lemma 5 For all 𝑥, 𝑦,𝑚 ∈ Z, we have gcd(𝑥, 𝑦) = gcd(𝑥−𝑚𝑦, 𝑦).

Since any 𝑚 ∈ Z will do, let’s choose 𝑚 to minimize 𝑥−𝑚𝑦, without making it negative. As long as 𝑦 ̸= 0, we can
do so by taking 𝑚 = ⌊𝑥/𝑦⌋, the integer quotient of 𝑥 and 𝑦. Then 𝑟 = 𝑥−𝑚𝑦 = 𝑥− ⌊𝑥/𝑦⌋𝑦 is simply the remainder
of 𝑥 when divided by 𝑦, i.e., 𝑟 = 𝑥 mod 𝑦.

The above results in the following corollary (where the second equality holds because the GCD is symmetric):

Corollary 6 For all 𝑥, 𝑦 ∈ Z with 𝑦 ̸= 0, we have gcd(𝑥, 𝑦) = gcd(𝑥 mod 𝑦, 𝑦) = gcd(𝑦, 𝑥 mod 𝑦).

(The rightmost expression maintains our convention that the first argument of gcd should be greater than or equal to
the second.)

We have just derived the key recurrence relation for gcd, which we will use as the heart of an algorithm. However, we
also need base cases. As mentioned previously, 𝑥 mod 𝑦 is defined only when 𝑦 ̸= 0, so we need a base case for 𝑦 = 0.
As we have already seen, gcd(𝑥, 0) = 𝑥 (even when 𝑥 = 0). (We can also observe that gcd(𝑥, 1) = 1 for all 𝑥. This
latter base case is not technically necessary; some descriptions of Euclid’s algorithm include it, while others do not.)

This leads us to the Euclidean algorithm:

Algorithm 7 (Euclid’s Algorithm)

Input: integers 𝑥 ≥ 𝑦 ≥ 0, not both zero
Output: their greatest common divisor gcd(𝑥, 𝑦)

function Euclid(𝑥, 𝑦)
if 𝑦 = 0 then return 𝑥

return Euclid(𝑦, 𝑥 mod 𝑦)

1.3. The First Algorithm: Euclid’s GCD 5

Foundations of Computer Science, Release 0.5

Here are some example runs of this algorithm:

Example 8

Euclid(21, 9)
= Euclid(9, 3)
= Euclid(3, 0)
= 3

Example 9

Euclid(30, 19)
= Euclid(19, 11)
= Euclid(11, 8)
= Euclid(8, 3)
= Euclid(3, 2)
= Euclid(2, 1)
= Euclid(1, 0)
= 1

Example 10

Euclid(376281, 376280)
= Euclid(376280, 1)
= Euclid(1, 0)
= 1

How efficient is this algorithm? Clearly, it does one mod operation per iteration—or more accurately, recursive
call—but it is no longer obvious how many iterations it performs. For instance, the computation of Euclid(30, 19)
does six iterations, while Euclid(376281, 376280) does only two. There doesn’t seem to be an obvious relationship
between the form of the input and the number of iterations.

This is an extremely simple algorithm, consisting of just a few lines of code. But that does not make it simple to reason
about. We need new techniques to analyze code like this and determine its time complexity.

1.3. The First Algorithm: Euclid’s GCD 6

CHAPTER

TWO

THE POTENTIAL METHOD

Let’s set aside Euclid’s algorithm for the moment and examine a game instead. Consider a “flipping game” that has

an 11 × 11 board covered with two-sided chips, say on the front side and on the back. Initially, the

entirety of the board is covered with every chip face down.

The game pits a row player against a column player, and both take turns flipping an entire row or column, respectively.
A row or column may be flipped only if it contains more face-down (OSU) than face-up (UM) chips. The game ends
when a player can make no legal moves, and that player loses the game. For example, if the game reaches the following
state and it is the column player’s move, the column player has no possible moves and therefore loses.

7

Foundations of Computer Science, Release 0.5

Let’s set aside strategy and ask a simpler question: must the game end in a finite number of moves, or is there a way to
play the game in a way that continues indefinitely?

An 11× 11 board is rather large to reason about, so a good strategy is to simplify the problem by considering a 3× 3
board instead. Let’s consider the following game state.

Suppose that it is the row player’s turn, and the player chooses to flip the bottom row.

Notice that in general, a move may flip some chips from UM to OSU, and others vice versa. This move in particular
flipped the first chip in the row from UM to OSU, and the latter two chips from OSU to UM. The number of chips
flipped in each direction depends on the state of a row or column, and it is not generally the case that every move flips
three OSU chips to UM in the 3× 3 board.

Continuing the game, the column player only has a single move available.

8

Foundations of Computer Science, Release 0.5

Again, one UM chip is flipped to OSU, and two OSU chips are flipped to UM.

It is again the row player’s turn, but now no row flips are possible. The game ends, with the victory going to the column
player.

We observe that each move flipped both UM and OSU chips, but each move flipped more OSU chips to UM than vice
versa. Is this always the case? Indeed it is, by rule: a move is legal only if the flipped row or column has more OSU than
UM chips. The move flips each OSU chip to a UM one, and each UM chip to an OSU chip. Since there are more OSU
than UM chips, more OSU-to-UM flips happen than vice versa. More formally and generally, for an 𝑛 × 𝑛 board, an
individual row or column has 𝑘 OSU chips and 𝑛−𝑘 UM chips, for some value of 𝑘. A move is legal when 𝑘 > 𝑛−𝑘.
After the flip, the row or column will have 𝑘 UM chips and 𝑛 − 𝑘 OSU chips. The net change in the number of UM
chips is 𝑘− (𝑛−𝑘), which is positive because 𝑘 > 𝑛−𝑘. Thus, each move strictly increases the number of UM chips,
and strictly decreases the number of OSU chips.

In the 3 × 3 case, we start with nine OSU chips. No board configuration can have fewer than zero OSU chips. Then
because each move decreases the number of OSU chips, no more than nine moves are possible before the game must
end. By the same reasoning, no more than 121 moves are possible in the original 11× 11 game.

Strictly speaking, it will always take fewer than 121 moves to reach a configuration where a player has no moves
available, because the first move decreases the number of OSU chips by eleven. But we don’t need an exact number to
answer our original question. We have proved an upper bound of 121 on the number of moves, so we have established
that any valid game must indeed end after a finite number of moves.

The core of the above reasoning is that we defined a special measure of the board’s state, namely, the number of OSU
chips. We observe that in each step, this measure must decrease (by at least one). The measure of the initial state is
finite, and there is a lower bound the measure cannot go below, so eventually that lower bound must be reached.

This pattern of reasoning is called the potential method. Formally, given some set 𝐴 of “states” (e.g., game states,
algorithm states, etc.), let 𝑠 : 𝐴 → R be a function that maps states to numbers. The function 𝑠 is a potential function
if:

1. it strictly decreases with every state transition (e.g., turn in a game, step of an algorithm, etc.)3

2. it is lower-bounded by some fixed value: there is some ℓ ∈ R for which 𝑠(𝑎) ≥ ℓ for all 𝑎 ∈ 𝐴.

By defining a valid potential function and establishing both its lower bound and how quickly it decreases, we can upper
bound the number of steps a complex algorithm may take.

3 We need to be a bit more precise to ensure that 𝑠 reaches its lower bound in a finite number of steps. A sufficient condition is that 𝑠 decreases
by at least some fixed constant 𝑐 in each step. In the game example, we established that 𝑠 decreases by at least 𝑐 = 1 in each turn.

9

Foundations of Computer Science, Release 0.5

2.1 A Potential Function for Euclid’s Algorithm

Let’s return to Euclid’s algorithm and try to come up with a potential function we can use to reason about its efficiency.
Specifically, we want to determine an upper bound on the number of iterations the algorithm takes for a given input 𝑥
and 𝑦.

First observe that 𝑥 and 𝑦 do not increase from one step to the next. For instance, Euclid(30, 19) calls Euclid(19, 11),
so 𝑥 decreases from 30 to 19 and 𝑦 decreases from 19 to 11. However, the amount each argument individually decreases
can vary. In Euclid(376281, 376280), 𝑥 decreases by only one in the next iteration, while 𝑦 decreases by 376279. In
Euclid(7, 7), 𝑥 does not decrease at all in the next iteration, but 𝑦 decreases by 7.

Since the algorithm has two arguments, both of which typically change as the algorithm proceeds, it seems reasonable
to define a potential function that takes both into account. Let 𝑥𝑖 and 𝑦𝑖 be the values of the two variables in the 𝑖th
iteration (recursive call). So, 𝑥0 = 𝑥 and 𝑦0 = 𝑦, where 𝑥 and 𝑦 are the original inputs to the algorithm; 𝑥1, 𝑦1 are
the arguments to the first recursive call; and so on. As a candidate potential function, we try a simple sum of the two
arguments:

𝑠𝑖 = 𝑥𝑖 + 𝑦𝑖 .

Before we look at some examples, let’s first establish that this is a valid potential function. Examining the algorithm,
when 𝑦𝑖 ̸= 0 we see that

𝑠𝑖+1 = 𝑥𝑖+1 + 𝑦𝑖+1

= 𝑦𝑖 + 𝑟𝑖 ,

where 𝑟𝑖 = 𝑥𝑖 mod 𝑦𝑖. Given the invariant maintained by the algorithm that 𝑥𝑖 ≥ 𝑦𝑖, and that 𝑥𝑖 mod 𝑦𝑖 ∈ [0, 𝑦𝑖−1],
we have that 𝑟𝑖 < 𝑦𝑖 ≤ 𝑥𝑖. Therefore,

𝑠𝑖+1 = 𝑦𝑖 + 𝑟𝑖

< 𝑦𝑖 + 𝑥𝑖

= 𝑠𝑖 .

Thus, the potential 𝑠 always decreases by at least one (because 𝑠 is a natural number) from one iteration to the next,
satisfying the first requirement of a potential function. We also observe that 𝑦𝑖 ≥ 0 for all 𝑖; coupled with 𝑥𝑖 ≥ 𝑦𝑖, and
the fact that both arguments are not zero, we get that 𝑠𝑖 ≥ 1 for all 𝑖. Since we have established a lower bound on 𝑠, it
meets the second requirement of a potential function.

At this point, we can conclude that Euclid’s algorithm Euclid(𝑥, 𝑦) performs at most 𝑥+𝑦 iterations. (This is because
the initial potential is 𝑥 + 𝑦, each iteration decreases the potential by at least one, and the potential is always greater
than zero.) However, this bound is no better than the one we derived for the brute-force GCD algorithm. So, have we
just been wasting our time here?

Fortunately, we have not! As we will soon show, this 𝑥 + 𝑦 upper bound for Euclid(𝑥, 𝑦) is very loose, and in fact
the actual number of iterations is much smaller. We will prove this by showing that the potential decreases much faster
than we previously considered.

As an example, let’s look at the values of the potential function for the execution of Euclid(21, 9):

𝑠0 = 21 + 9 = 30

𝑠1 = 9 + 3 = 12

𝑠2 = 3 + 0 = 3 .

And the following are the potential values for Euclid(8, 5):

𝑠0 = 8 + 5 = 13

𝑠1 = 5 + 3 = 8

𝑠2 = 3 + 2 = 5

𝑠3 = 2 + 1 = 3

𝑠4 = 1 + 0 = 1 .

2.1. A Potential Function for Euclid’s Algorithm 10

Foundations of Computer Science, Release 0.5

The values decay rather quickly for Euclid(21, 9), and somewhat more slowly for Euclid(8, 5). But the key observa-
tion is that they appear to decay multiplicatively (by some factor), rather than additively. In these examples, the ratio
of 𝑠𝑖+1/𝑠𝑖 is largest for 𝑠2/𝑠1 in Euclid(8, 5), where it is 0.625. In fact, we will prove an upper bound that is not far
from that value.

Lemma 11 For all valid inputs 𝑥, 𝑦 to Euclid’s algorithm, 𝑠𝑖+1 ≤ 2
3𝑠𝑖 for every iteration 𝑖 of Euclid(𝑥, 𝑦).

The recursive case of Euclid(𝑥𝑖, 𝑦𝑖) invokes Euclid(𝑦𝑖, 𝑥𝑖 mod 𝑦𝑖), so 𝑥𝑖+1 = 𝑦𝑖 and 𝑦𝑖+1 = 𝑟𝑖 = 𝑥𝑖 mod 𝑦𝑖 (the
remainder of dividing 𝑥𝑖 by 𝑦𝑖). By definition of remainder, we can express 𝑥𝑖 as

𝑥𝑖 = 𝑞𝑖 · 𝑦𝑖 + 𝑟𝑖 ,

where 𝑞𝑖 = ⌊𝑥𝑖/𝑦𝑖⌋ is the integer quotient of 𝑥𝑖 divided by 𝑦𝑖. Since 𝑥𝑖 ≥ 𝑦𝑖, we have that 𝑞𝑖 ≥ 1. Then:

𝑠𝑖 = 𝑥𝑖 + 𝑦𝑖

= 𝑞𝑖 · 𝑦𝑖 + 𝑟𝑖 + 𝑦𝑖 (substituting 𝑥𝑖 = 𝑞𝑖 · 𝑦𝑖 + 𝑟𝑖)
= (𝑞𝑖 + 1) · 𝑦𝑖 + 𝑟𝑖

≥ 2𝑦𝑖 + 𝑟𝑖 (since 𝑞𝑖 ≥ 1).

We are close to what we need to relate 𝑠𝑖 to 𝑠𝑖+1 = 𝑦𝑖 + 𝑟𝑖, but we would like a common multiplier for both the 𝑦𝑖 and
𝑟𝑖 terms. Let’s split the difference by adding 𝑟𝑖/2 and subtracting 𝑦𝑖/2:

𝑠𝑖 ≥ 2𝑦𝑖 + 𝑟𝑖

> 2𝑦𝑖 + 𝑟𝑖 −
𝑦𝑖 − 𝑟𝑖

2
(since 𝑟𝑖 < 𝑦𝑖).

The latter step holds because 𝑟𝑖 is the remainder of dividing 𝑥𝑖 by 𝑦𝑖, so 𝑦𝑖 − 𝑟𝑖 > 0. (And subtracting a positive
number makes a quantity smaller.)

Continuing onward, we have:

𝑠𝑖 ≥ 2𝑦𝑖 + 𝑟𝑖 −
𝑦𝑖 − 𝑟𝑖

2

=
3

2
(𝑦𝑖 + 𝑟𝑖)

=
3

2
𝑠𝑖+1 .

Rearranging the inequality, we conclude that 𝑠𝑖+1 ≤ 2
3𝑠𝑖.

By repeated applications of the above lemma (i.e., induction), starting with 𝑠0 = 𝑥0 + 𝑦0 = 𝑥 + 𝑦, we can conclude
that:

Corollary 12 For all valid inputs 𝑥, 𝑦 to Euclid’s algorithm, 𝑠𝑖 ≤ (23)
𝑖(𝑥+𝑦) for all iterations 𝑖 of Euclid(𝑥, 𝑦).

We can now prove the following:

Theorem 13 (Time Complexity of Euclid’s Algorithm) For any valid inputs 𝑥, 𝑦, Euclid(𝑥, 𝑦) performs
𝑂(log(𝑥+ 𝑦)) iterations (and mod operations).

We have previously shown that 1 ≤ 𝑠𝑖 ≤ (23)
𝑖(𝑥+ 𝑦) for the 𝑖th iteration of Euclid(𝑥, 𝑦). Therefore,

1 ≤ (
2

3
)𝑖(𝑥+ 𝑦)

(
3

2
)𝑖 ≤ 𝑥+ 𝑦

𝑖 ≤ log3/2(𝑥+ 𝑦) (taking the base-(3/2) log of both sides).

2.1. A Potential Function for Euclid’s Algorithm 11

Foundations of Computer Science, Release 0.5

We have just established an upper bound on 𝑖, which means that the number of iterations cannot exceed log3/2(𝑥+𝑦) =

𝑂(log(𝑥 + 𝑦)). Indeed, in order for 𝑖 to exceed this quantity, it would have to be the case that 1 > (2/3)𝑖(𝑥 + 𝑦),
leaving no possible value for the associated potential 𝑠𝑖—an impossibility! (Also recall that we can change the base of a
logarithm by multiplying by a suitable constant, and since𝑂-notation ignores constant factors, the base in𝑂(log(𝑥+𝑦))
does not matter. Unless otherwise specified, the base of a logarithm is assumed to be 2 in this text.) Since each iteration
does at most one mod operation, the total number of mod operations is also 𝑂(log(𝑥+ 𝑦)), completing the proof.

Under our convention that 𝑥 ≥ 𝑦, we have that𝑂(log(𝑥+𝑦)) = 𝑂(log 2𝑥) = 𝑂(log 𝑥). Recall that the naïve algorithm
did Θ(𝑥) iterations and mod operations (in the worst case). This means that Euclid’s algorithm is exponentially faster
than the naïve algorithm!

We have seen that the potential method gives us an important tool in reasoning about the complexity of algorithms,
enabling us to establish an upper bound on the runtime of Euclid’s algorithm.

2.1. A Potential Function for Euclid’s Algorithm 12

CHAPTER

THREE

DIVIDE AND CONQUER

The divide-and-conquer algorithmic paradigm involves subdividing a large problem instance into smaller instances of
the same problem. The subinstances are solved recursively, and then their solutions are combined in some appropriate
way to construct a solution for the original larger instance.

Since divide and conquer is a recursive paradigm, the main tool for analyzing divide-and-conquer algorithms is induc-
tion. When it comes to complexity analysis, such algorithms generally give rise to recurrence relations expressing the
time or space complexity. While these relations can be solved inductively, certain patterns are common enough that
higher-level tools have been developed to handle them. We will see one such tool in the form of the master theorem.

As an example of a divide-and-conquer algorithm, the following is a description of the merge sort algorithm for sorting
mutually comparable items:

Algorithm 14 (Merge Sort)

Input: an array of elements that can be ordered
Output: a sorted array of the same elements

function MergeSort(𝐴[1, . . . , 𝑛])
if 𝑛 = 1 then return 𝐴
𝑚 = ⌊𝑛/2⌋
𝐿 = MergeSort(𝐴[1, . . . ,𝑚])
𝑅 = MergeSort(𝐴[𝑚+ 1, . . . , 𝑛])
return Merge(𝐿,𝑅)

Input: two sorted arrays
Output: a sorted array of the same elements

function Merge(𝐿[1, . . . , ℓ], 𝑅[1, . . . , 𝑟])
if ℓ = 0 then return 𝑅
if 𝑟 = 0 then return 𝐿
if 𝐿[1] ≤ 𝑅[1] then

return 𝐿[1] : Merge(𝐿[2, . . . , ℓ], 𝑅[1, . . . , 𝑟])
else

return 𝑅[1] : Merge(𝐿[1, . . . , ℓ], 𝑅[2, . . . , 𝑟])

The algorithm sorts an array by first recursively sorting its two halves, then combining the sorted halves with the merge
operation. Thus, it follows the pattern of a divide-and-conquer algorithm.

13

Foundations of Computer Science, Release 0.5

6 14 12 1 9 4 8 0 5 13 15 10 7 2 3 11

0 1 4 6 8 9 12 14 2 3 5 7 10 11 13 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sort each half recursively

Merge

A naïve algorithm such as insertion sort4 has a time complexity of Θ(𝑛2). How does merge sort compare?

Define 𝑇 (𝑛) to be the total number of basic operations (array indexes, element comparisons, etc.) performed by
MergeSort on an array of 𝑛 elements. Similarly, let 𝑆(𝑛) be the number of basic operations apart from the recursive
calls themselves: testing whether 𝑛 = 1, splitting the input array into halves, the cost of Merge on the two halves, etc.
Then we have the following recurrence for 𝑇 (𝑛):

𝑇 (𝑛) = 2𝑇 (𝑛/2) + 𝑆(𝑛) .

This is because on an array of 𝑛 elements, MergeSort makes two recursive calls to itself on some array of 𝑛/2
elements, each of which takes 𝑇 (𝑛/2) time by definition, and all its other non-recursive work takes 𝑆(𝑛) by definition.
(For simplicity, we ignore the floors and ceilings for 𝑛/2, which do not affect the ultimate asymptotic bounds.)

Observe that the merge step does 𝑛 comparisons and ~𝑛 array concatenations. Assuming that each of these operations
takes a constant amount of time (that does not grow with 𝑛)5, we have that 𝑆(𝑛) = 𝑂(𝑛). So,

𝑇 (𝑛) = 2𝑇 (𝑛/2) +𝑂(𝑛) .

How can we solve this recurrence, i.e., express 𝑇 (𝑛) in a “closed form” that depends only on 𝑛 (and does not refer to
𝑇 itself)? While we can do so using induction or other tools for solving recurrence relations, this can be a lot of work.
Thankfully, there is a special tool called the Master Theorem that directly yields a solution to this recurrence and many
others like it.

3.1 The Master Theorem

Suppose we have some recursive divide-and-conquer algorithm that solves an input of size 𝑛:

• recursively solving some 𝑘 ≥ 1 smaller inputs,

• each of size 𝑛/𝑏 for some 𝑏 > 1 (as before, ignoring floors and ceilings),

• where the total cost of all the “non-recursive work” (splitting the input, combining the results, etc.) is 𝑂(𝑛𝑑).

Then the running time 𝑇 (𝑛) of the algorithm follows the recurrence relation

𝑇 (𝑛) = 𝑘𝑇 (𝑛/𝑏) +𝑂(𝑛𝑑) .

The Master Theorem provides the solutions to such recurrences.6

4 https://en.wikipedia.org/wiki/Insertion_sort
5 Using a linked-list data structure, adding an element to the front does indeed take a constant amount of time; for arrays, with care it is also

possible to implement Merge in linear time. On the other hand, the assumption of constant-time comparisons typically holds only for fixed-size
data types, such as 32-bit integers or 64-bit floating-point numbers. For arbitrary-size numbers or other variable-length data types like strings whose
sizes might grow with 𝑛, this assumption does not hold, and the cost of comparisons needs to be considered more carefully.

6 Refer to the appendix (page 291) for proofs of this master theorem, as well as a more general version with log factors.

3.1. The Master Theorem 14

https://en.wikipedia.org/wiki/Insertion_sort

Foundations of Computer Science, Release 0.5

Theorem 15 (Master Theorem) Let 𝑘 ≥ 1, 𝑏 > 1, 𝑑 ≥ 0 be constants that do not vary with 𝑛, and let 𝑇 (𝑛) be a
recurrence with base case 𝑇 (1) = 𝑂(1) having the following form, ignoring ceilings/floors on (or more generally,
addition/subtraction of any constant to) the 𝑛/𝑏 argument on the right-hand side:

𝑇 (𝑛) = 𝑘 · 𝑇 (𝑛/𝑏) +𝑂(𝑛𝑑) .

Then this recurrence has the solution

𝑇 (𝑛) =

⎧⎪⎪⎨⎪⎪⎩
𝑂(𝑛𝑑) if 𝑘 < 𝑏𝑑

𝑂(𝑛𝑑 log 𝑛) if 𝑘 = 𝑏𝑑

𝑂(𝑛log𝑏 𝑘) if 𝑘 > 𝑏𝑑 .

In addition, the above bounds are tight: if the 𝑂 in the recurrence is replaced with Θ, then it is in the solution as
well.

Observe that the test involving 𝑘, 𝑏, and 𝑑 can be expressed in logarithmic form, by taking base-𝑏 logarithms and
comparing log𝑏 𝑘 to 𝑑.

In the case of merge sort, we have 𝑘 = 𝑏 = 2 and 𝑑 = 1, so 𝑘 = 𝑏𝑑, so the solution is 𝑇 (𝑛) = 𝑂(𝑛 log 𝑛) (and this is
tight). Thus, merge sort is much more efficient than insertion sort! (As always in this text, this is merely an asymptotic
statement, for large enough 𝑛.)

We emphasize that in order to apply (this version of) the Master Theorem, the values 𝑘, 𝑏, 𝑑 must be constants that do
not vary with 𝑛. For example, the theorem does not apply to a divide-and-conquer algorithm that recursively solves
𝑘 =

√
𝑛 subinstances, or one whose subinstances are of size 𝑛/ log 𝑛. In such a case, a different tool is needed to solve

the recurrence. Fortunately, the Master Theorem does apply to the vast majority of divide-and-conquer algorithms of
interest.

3.1.1 Master Theorem with Log Factors

A recurrence such as

𝑇 (𝑛) = 2𝑇 (𝑛/2) +𝑂(𝑛 log 𝑛)

does not exactly fit the form of the master theorem above, since the additive term 𝑂(𝑛 log 𝑛) does not look like 𝑂(𝑛𝑑)
for some constant 𝑑.7 Such a recurrence can be handled by a more general form of the theorem, as follows.

Theorem 16 Let 𝑇 (𝑛) be the following recurrence, where 𝑘 ≥ 1, 𝑏 > 1, 𝑑 ≥ 0, 𝑤 ≥ 0 are constants that do not
vary with 𝑛:

𝑇 (𝑛) = 𝑘𝑇 (𝑛/𝑏) +𝑂(𝑛𝑑 log𝑤 𝑛) .

Then:

𝑇 (𝑛) =

⎧⎪⎪⎨⎪⎪⎩
𝑂(𝑛𝑑 log𝑤 𝑛) if 𝑘 < 𝑏𝑑

𝑂(𝑛𝑑 log𝑤+1 𝑛) if 𝑘 = 𝑏𝑑

𝑂(𝑛log𝑏 𝑘) if 𝑘 > 𝑏𝑑 .

Applying the generalized master theorem to the recurrence
7 Actually, it can be made to fit this form, since any 𝑂(𝑛 log𝑛) function is also, say, 𝑂(𝑛1.001)—because 𝑂 represents an upper bound, and

log𝑛 = 𝑂(𝑛𝜀) for an arbitrary positive constant 𝜀 > 0. However, this substitution is not tight—it does not hold with Θ in place of 𝑂—and adding
a tiny amount to the exponent is clunky.

3.1. The Master Theorem 15

Foundations of Computer Science, Release 0.5

𝑇 (𝑛) = 2𝑇 (𝑛/2) +𝑂(𝑛 log 𝑛) ,

we have 𝑘 = 2, 𝑏 = 2, 𝑑 = 1, 𝑤 = 1, so 𝑘 = 𝑏𝑑. Therefore,

𝑇 (𝑛) = 𝑂(𝑛𝑑 log𝑤+1 𝑛)

= 𝑂(𝑛 log2 𝑛) .

3.2 Integer Multiplication

We now turn our attention to algorithms for integer multiplication. For fixed-size data types, such as 32-bit integers,
multiplication can be done in a constant amount of time, and is typically implemented as a hardware instruction for
common sizes. However, if we are working with arbitrary 𝑛-bit numbers, we will have to implement multiplication
ourselves in software. (As we will see later, multiplication of such “big” integers is essential to many cryptography
algorithms.)

Let’s first take a look the standard grade-school long-multiplication algorithm.

011101011001
110111

110111
110111
010101
110111

=
+
+
=

´

59

42

59<<1

59<<3

59<<5

2478

Here, the algorithm is illustrated for binary numbers, but it works the same as for decimal numbers, just in base two. We
first multiply the top number by the last (least-significant) digit in the bottom number. We then multiply the top number
by the second-to-last digit in the bottom number, but we shift the result leftward by one digit. We repeat this for each
digit in the bottom number, adding one more leftward shift with each digit. Once we have done all the multiplications
for each digit of the bottom number, we add up the results to compute the final product.

How efficient is this algorithm? If the input numbers are each 𝑛 bits long, then each individual multiplication takes
linear 𝑂(𝑛) time: we have to multiply each digit in the top number by the single digit in the bottom number (plus a
carry if we are working in decimal). Since we have to do 𝑛 multiplications, computing the partial results takes 𝑂(𝑛2)
total time. We then need to add the 𝑛 partial results. The longest partial result is the last one, which is about 2𝑛 digits
long. Thus, we add 𝑛 numbers, each of which has 𝑂(𝑛) digits. Adding two 𝑂(𝑛)-digit numbers takes 𝑂(𝑛) time, so
adding 𝑛 of them takes a total of 𝑂(𝑛2) time. Adding the time for the multiplications and additions leaves us with
a total of 𝑂(𝑛2) time for the entire multiplication. (All of the above bounds are tight, so the running time is in fact
Θ(𝑛2).)

Can we do better? Let’s try to make use of the divide-and-conquer paradigm. We first need a way of breaking up an
𝑛-digit number into smaller pieces. We can do that by splitting it into the first 𝑛/2 digits and the last 𝑛/2 digits. For
the rest of our discussion, we will work with decimal numbers, though the same reasoning applies to numbers in any
other base. Assume that 𝑛 is even for simplicity (we can ensure this by appending a zero in the most-significant digit,
if needed).

3.2. Integer Multiplication 16

Foundations of Computer Science, Release 0.5

X = A B

n/2 digits n/2 digits

As an example, consider the number 376280. Here 𝑛 = 6, and splitting the number into two pieces gives us 376 and
280. How are these pieces related to the original number? We have:

376280 = 376 · 1000 + 280

= 376 · 103 + 280

= 376 · 10𝑛/2 + 280 .

In general, when we split an 𝑛-digit number 𝑋 into two 𝑛/2-digit pieces 𝐴 and 𝐵, we have that 𝑋 = 𝐴 · 10𝑛/2 +𝐵.

Let’s now apply this splitting process to multiply two 𝑛-digit numbers 𝑋 and 𝑌 . Split 𝑋 into 𝐴 and 𝐵, and 𝑌 into 𝐶
and 𝐷, so that:

𝑋 = 𝐴 · 10𝑛/2 +𝐵 ,

𝑌 = 𝐶 · 10𝑛/2 +𝐷 .

X = A B

Y = C D

n/2 digits n/2 digits

We can then expand 𝑋 · 𝑌 as:

𝑋 · 𝑌 = (𝐴 · 10𝑛/2 +𝐵) · (𝐶 · 10𝑛/2 +𝐷)

= 𝐴 · 𝐶 · 10𝑛 +𝐴 ·𝐷 · 10𝑛/2 +𝐵 · 𝐶 · 10𝑛/2 +𝐵 ·𝐷
= 𝐴 · 𝐶 · 10𝑛 + (𝐴 ·𝐷 +𝐵 · 𝐶) · 10𝑛/2 +𝐵 ·𝐷 .

This suggests a natural divide-and-conquer algorithm for multiplying 𝑋 and 𝑌 :

• split them as above,

• recursively multiply 𝐴 · 𝐶, 𝐴 ·𝐷, etc.,

• multiply each of these by the appropriate power of 10,

• sum everything up.

How efficient is this computation? First, observe that multiplying a number by 10𝑘 is the same as shifting it to the left
by appending 𝑘 zeros to the (least-significant) end of the number, so it can be done in 𝑂(𝑘) time. So, the algorithm has
the following subcomputations:

• 4 recursive multiplications of 𝑛/2-digit numbers (𝐴 · 𝐶, 𝐴 ·𝐷, 𝐵 · 𝐶, 𝐵 ·𝐷),

• 2 left shifts, each of which takes 𝑂(𝑛) time,

• 3 additions of 𝑂(𝑛)-digit numbers, which take 𝑂(𝑛) time.

Let 𝑇 (𝑛) be the time it takes to multiply two 𝑛-digit numbers using this algorithm. By the above analysis, it satisfies
the recurrence

𝑇 (𝑛) = 4𝑇 (𝑛/2) +𝑂(𝑛) .

3.2. Integer Multiplication 17

Foundations of Computer Science, Release 0.5

Applying the Master Theorem with 𝑘 = 4, 𝑏 = 2, 𝑑 = 1, we have that 𝑘 > 𝑏𝑑. Therefore, the solution is

𝑇 (𝑛) = 𝑂(𝑛log2 4) = 𝑂(𝑛2) .

Unfortunately, this is the same as for the long-multiplication algorithm! We did a lot of work to come up with a divide-
and-conquer algorithm, and it doesn’t do any better than a naïve algorithm. Our method of splitting and recombining
wasn’t sufficiently “clever” to yield an improvement.

3.2.1 The Karatsuba Algorithm

Observe that the 𝑂(𝑛2) bound above has an exponent of log2 4 = 2 because we recursed on four separate subinstances
of size 𝑛/2. Let’s try again, but this time, let’s see if we can rearrange the computation so that we have fewer than four
such subinstances. We previously wrote

𝑋 · 𝑌 = 𝐴 · 𝐶 · 10𝑛 + (𝐴 ·𝐷 +𝐵 · 𝐶) · 10𝑛/2 +𝐵 ·𝐷 .

This time, we will write 𝑋 · 𝑌 in a different, more clever way using fewer multiplications of (roughly) “half-size”
numbers. Consider the values

𝑀1 = (𝐴+𝐵) · (𝐶 +𝐷)

𝑀2 = 𝐴 · 𝐶
𝑀3 = 𝐵 ·𝐷 .

Observe that 𝑀1 = 𝐴 · 𝐶 +𝐴 ·𝐷 +𝐵 · 𝐶 +𝐵 ·𝐷, and we can subtract 𝑀2 = 𝐴 · 𝐶 and 𝑀3 = 𝐵 ·𝐷 to obtain

𝑀1 −𝑀2 −𝑀3 = 𝐴 ·𝐷 +𝐵 · 𝐶 .

This is exactly the “middle” term in the above expansion of 𝑋 · 𝑌 . Thus:

𝑋 · 𝑌 = 𝑀2 · 10𝑛 + (𝑀1 −𝑀2 −𝑀3) · 10𝑛/2 +𝑀3 .

This suggests a different divide-and-conquer algorithm for multiplying 𝑋 and 𝑌 :

• split them as above,

• compute 𝐴+𝐵,𝐶 +𝐷 and recursively multiply them to get 𝑀1,

• recursively compute 𝑀2 = 𝐴 · 𝐶 and 𝑀3 = 𝐵 ·𝐷,

• compute 𝑀1 −𝑀2 −𝑀3,

• multiply by appropriate powers of 10,

• sum up the terms.

This is known as the Karatsuba algorithm. How efficient is the computation? We have the following subcomputations:

• Computing 𝑀1 does two additions of 𝑛/2-digit numbers, resulting in two numbers that are up to 𝑛/2 + 1 digits
each. This takes 𝑂(𝑛) time.

• Then these two numbers are multiplied, which takes essentially 𝑇 (𝑛/2) time. (The Master Theorem lets us
ignore the one extra digit of input length, just like we can ignore floors and ceilings.)

• Computing 𝑀2 and 𝑀3 each take 𝑇 (𝑛/2) time.

• Computing 𝑀1 −𝑀2 −𝑀3, multiplying by powers of 10, and adding up terms all take 𝑂(𝑛) time.

3.2. Integer Multiplication 18

Foundations of Computer Science, Release 0.5

So, the running time 𝑇 (𝑛) satisfies the recurrence

𝑇 (𝑛) = 3𝑇 (𝑛/2) +𝑂(𝑛) .

Applying the master theorem with 𝑘 = 3, 𝑏 = 2, 𝑑 = 1, we have that 𝑘 > 𝑏𝑑. This yields the solution

𝑇 (𝑛) = 𝑂(𝑛log2 3) = 𝑂(𝑛1.585) .

(Note that log2 3 is slightly smaller than 1.585, so the second equality is valid because big-O represents an upper
bound.) Thus, the Karatsuba algorithm gives us a runtime that is asymptotically much faster than the naïve algorithm!
Indeed, it was the first algorithm discovered for integer multiplication that takes “subquadratic” time.

3.3 The Closest-Pair Problem

In the closest-pair problem, we are given 𝑛 ≥ 2 points in 𝑑-dimensional space, and our task is to find a pair 𝑝, 𝑝′ of the
points whose distance apart ‖𝑝 − 𝑝′‖ is smallest among all pairs of the points; such points are called a “closest pair”.
Notice that there may be ties among distances between points, so there may be more than one closest pair. Therefore,
we typically say a closest pair, rather than the closest pair, unless we know that the closest pair is unique in some
specific situation. This problem has several applications in computational geometry and data mining (e.g. clustering).
The following is an example of this problem in two dimensions, where the (unique) closest pair is at the top left in red.

A naïve algorithm compares the distance between every pair of points and returns a pair that is the smallest distance
apart; since there are Θ(𝑛2) pairs, the algorithm takes Θ(𝑛2) time. Can we do better?

Let’s start with the problem in the simple setting of one dimension. That is, given a list of𝑛 real numbers 𝑥1, 𝑥2, . . . , 𝑥𝑛,
we wish to find a pair of the numbers that are closest together. In other words, find some 𝑥𝑖, 𝑥𝑗 that minimize |𝑥𝑖−𝑥𝑗 |,
where 𝑖 ̸= 𝑗.

Rather than comparing every pair of numbers, we can first sort the numbers. Then it must be the case that there is some
closest pair of numbers that is adjacent in the sorted list. (Exercise: prove this formally. However, notice that not every
closest pair must be adjacent in the sorted list, because there can be duplicate numbers.) So, we need only compare
each pair of adjacent points to find some closest pair. The following is a complete algorithm:

Algorithm 17 (Closest Numbers)

Input: an array of 𝑛 ≥ 2 numbers
Output: a closest pair of numbers in the array

function ClosestNumbers(𝐴[1, . . . , 𝑛])
𝑆 = MergeSort(𝐴)

3.3. The Closest-Pair Problem 19

Foundations of Computer Science, Release 0.5

𝑖 = 1
for 𝑘 = 2 to 𝑛− 1 do

if |𝑆[𝑘]− 𝑆[𝑘 + 1]| < |𝑆[𝑖]− 𝑆[𝑖+ 1]| then
𝑖 = 𝑘

return 𝑆[𝑖], 𝑆[𝑖+ 1]

As we saw previously, merge sort takes Θ(𝑛 log 𝑛) time (assuming fixed-size numbers). The algorithm above also
iterates over the sorted list, doing a constant amount of work in each iteration. This takes Θ(𝑛) time. Putting the two
steps together results in a total running time of Θ(𝑛 log 𝑛), which is better than the naïve Θ(𝑛2).

This algorithm works for one-dimensional points, i.e., real numbers. Unfortunately, it is not clear how to generalize
this algorithm to two-dimensional points. While there are various ways we can sort such points, there is no obvious
ordering that provides the guarantee that some closest pair of points is adjacent in the resulting ordering. For example,
if we sort by 𝑥-coordinate, then a closest pair will be relatively close in their 𝑥-coordinates, but there may be another
point with an 𝑥-coordinate between theirs that is very far away in its 𝑦-coordinate.

Let’s take another look at the one-dimensional problem, instead taking a divide-and-conquer approach. Consider the
median of all the points, and suppose we partition the points into two halves of (almost) equal size, according to which
side of the median they lie on. For simplicity, here and below we assume without loss of generality that the median splits
the points into halves that are as balanced as possible, by breaking ties between points as needed to ensure balance.

m = median of S

L R
S

xL xR

Now consider a closest pair of points in the full set. It must satisfy exactly one of the following three cases:

• both points are from the left half,

• both points are from the right half,

• it “crosses” the halves, with one point in the left half and the other point in the right half.

In the “crossing” case, we can draw a strong conclusion about the two points: they must consist of a largest point in
the left half, and a smallest point in the right half. (For if not, there would be an even closer crossing pair, which would
contradict the hypothesis about the original pair.) So, such a pair is the only crossing pair we need to consider when
searching for a closest pair.

This reasoning leads naturally to a divide-and-conquer algorithm. We find the median and recursively find a closest
pair within just the left-half points, and also within just the right-half points. We also consider a largest point on the
left with a smallest point on the right. Finally, we return a closest pair among all three of these options. By the three
cases above, the output must be a closest pair among all the points. Specifically, in the first case, the recursive call on
the left half returns a closest pair for the full set, and similarly for the second case and the recursive call on the right
half. And in the third case, by the above reasoning, the specific crossing pair constructed by the algorithm is a closest
pair for the full set.

The full algorithm is as follows. For the convenience of the recursive calls, in the case 𝑛 = 1 we define the algorithm
to return a “dummy” output (⊥,⊥,∞) representing non-existent points that are infinitely far apart. Therefore, we do
not have to check whether each recursive call involves more than one point, and some other pair under consideration
will be closer than this dummy result.

3.3. The Closest-Pair Problem 20

Foundations of Computer Science, Release 0.5

Algorithm 18 (1D Closest Pairs)

Input: an array of 𝑛 ≥ 1 real numbers
Output: a closest pair of the points, and their distance apart (or a dummy output with distance ∞, when 𝑛 = 1)

function ClosestPair1D(𝐴[1, . . . , 𝑛])
if 𝑛 = 1 then return (⊥,⊥,∞)

if 𝑛 = 2 then return (𝐴[1], 𝐴[2], |𝐴[1]−𝐴[2]|)
partition 𝐴 by its median 𝑚 into arrays 𝐿,𝑅
(ℓ, ℓ′, 𝛿𝐿) = ClosestPair1D(𝐿)
(𝑟, 𝑟′, 𝛿𝑅) = ClosestPair1D(𝑅)
𝑝 = a largest element in 𝐿
𝑝′ = a smallest element in 𝑅
return one of the triples (ℓ, ℓ′, 𝛿𝐿), (𝑟, 𝑟′, 𝛿𝑅), (𝑝, 𝑝′, |𝑝− 𝑝′|) that has smallest distance

Analyzing this algorithm for its running time, we can find the median of a set of points by sorting them and then taking
the point in the middle. We can also obtain a largest element in the left side and a largest element in the right right from
the sorted list. Partitioning the points by the median also takes Θ(𝑛) time; we just compare each point to the median.
The non-recursive work is dominated by the Θ(𝑛 log 𝑛)-time sorting, so we end up with the recurrence:

𝑇 (𝑛) = 2𝑇 (𝑛/2) + Θ(𝑛 log 𝑛) .

This isn’t quite covered by the basic form of the Master Theorem, since the additive term is not of the form Θ(𝑛𝑑)
for a constant 𝑑. However, it is covered by the Master Theorem with Log Factors (page 15), which yields the solution
𝑇 (𝑛) = Θ(𝑛 log2 𝑛). (See also a solution using substitution in Example 298.) This means that this algorithm is
asymptotically less efficient than our previous one! However, there are two possible modifications we can make:

• Use a Θ(𝑛) median-finding algorithm8 rather than sorting to find the median.

• Sort the points just once at the beginning, so that we don’t need to re-sort in each recursive call.

Either modification brings the running time of the non-recursive work down to Θ(𝑛), resulting in a full running time
of 𝑇 (𝑛) = Θ(𝑛 log 𝑛). (The second option involves an additional Θ(𝑛 log 𝑛) on top of this for the presorting, but that
still results in a total time of Θ(𝑛 log 𝑛).)

Exercise 19 In the one-dimensional closest-pair algorithm, we computed the median 𝑚, the closest-pair distance
𝛿𝐿 on the left, and the closest-pair distance 𝛿𝑅 on the right. Let 𝛿 = min{𝛿𝐿, 𝛿𝑅}. How many points can lie in
the interval [𝑚,𝑚+ 𝛿)? What about the interval (𝑚− 𝛿,𝑚+ 𝛿)?

m = median of S

L R
S

d d

Now let’s try to generalize this algorithm to two dimensions. It’s not clear how to split the points according to a median
point, or even what a meaningful “median point” would be. So rather than doing that, we instead use a median line as
defined by the median 𝑥-coordinate.

8 https://en.wikipedia.org/wiki/Median_of_medians

3.3. The Closest-Pair Problem 21

https://en.wikipedia.org/wiki/Median_of_medians

Foundations of Computer Science, Release 0.5

L R

S

ℓ

d d

As before, any closest pair for the full set must satisfy one of the following: both of its points are in the left half, both
are in the right half, or it is a “crossing” pair with exactly one point in each half. Similarly to above, we will prove that
in the “crossing” case, the pair must satisfy some specific conditions. This means that it will suffice for our algorithm
to check only those crossing pairs that meet the conditions—since this will find a closest pair, it can ignore all the rest.

In two dimensions we cannot draw as strong of a conclusion about the “crossing” case as we could in one dimension.
In particular, the 𝑥-coordinates of the pair may not be closest to the median line: there could be another crossing pair
whose 𝑥-coordinates are even closer to the median line, but whose 𝑦-coordinates are very far apart, making that pair
farther apart overall. Nevertheless, the 𝑥-coordinates are “relatively close” to the median line, as shown in the following
lemma.

Lemma 20 Let 𝛿𝐿 and 𝛿𝑅 respectively be the closest-pair distances for just the left and right halves. If a closest
pair for the entire set of point is “crossing,” then both of its points must be within distance 𝛿 = min{𝛿𝐿, 𝛿𝑅} of
the median line.

Proof 21 We prove the contrapositive. If a crossing pair of points has at least one point at distance greater than
𝛿 from the median line, then the pair of points are more than 𝛿 apart. Therefore, they cannot be a closest pair for
the entire set, because there is another pair that is only 𝛿 apart. □

Thus, the only crossing pairs that our algorithm needs to consider are those whose points lie in the “𝛿-strip”, i.e., the
space within distance 𝛿 of the median line (in the 𝑥-coordinate); no other crossing pair can be a closest pair for the
entire set. This leads to the following algorithm:

3.3. The Closest-Pair Problem 22

Foundations of Computer Science, Release 0.5

Algorithm 22 (2D Closest Pair – First Attempt)

Input: an array of 𝑛 ≥ 1 points in the plane
Output: a closest pair of the points, and their distance apart (or a dummy output with distance ∞, when 𝑛 = 1)

function ClosestPair2DAttempt(𝐴[1, . . . , 𝑛])
if 𝑛 = 1 then return (⊥,⊥,∞)

if 𝑛 = 2 then return (𝐴[1], 𝐴[2], ‖𝐴[1]−𝐴[2]‖)
partition 𝐴 by its median 𝑥-coordinate 𝑚 into arrays 𝐿,𝑅
(ℓ, ℓ′, 𝛿ℓ) = ClosestPair2DAttempt(𝐿)
(𝑟, 𝑟′, 𝛿𝑟) = ClosestPair2DAttempt(𝑅)
𝛿 = min{𝛿ℓ, 𝛿𝑟}
find a closest pair (𝑝, 𝑝′) ∈ 𝐿×𝑅 among the points whose 𝑥-coordinates are within 𝛿 of 𝑚
return one of the triples (ℓ, ℓ′, 𝛿ℓ), (𝑟, 𝑟′, 𝛿𝑟), (𝑝, 𝑝′, ‖𝑝− 𝑝′‖) that has smallest distance

Apart from its checks of crossing pairs in the 𝛿-strip, the non-recursive work is same as in the one-dimensional algo-
rithm, and it takesΘ(𝑛) time. (We can presort the points by 𝑥-coordinate or use aΘ(𝑛)-time median-finding algorithm,
as before.) How long does it take to check the crossing pairs in the 𝛿-strip? A naïve examination would consider ev-
ery pair of points where one is in the left side of the 𝛿-strip and the other is in its right side. But notice that in the
worst case, all of the points can be in the 𝛿-strip! For example, this can happen if the points are close together in the
𝑥-dimension—in the extreme, they all lie on the median line—but far apart in the 𝑦-dimension. So in the worst case,
we have 𝑛/2 points in each of the left and right parts of the 𝛿-strip, leaving us with 𝑛2/4 = Θ(𝑛2) crossing pairs to
consider. So we end up with the recurrence and solution

𝑇 (𝑛) = 2𝑇 (𝑛/2) + Θ(𝑛2) = Θ(𝑛2) .

This is no better than the naïve algorithm that just compares all pairs of points! We have not found an efficient enough
non-recursive “combine” step.

Let’s again consider the case where a closest pair for the whole set is a “crossing” pair, and try to establish some
additional stronger properties for it, so that our algorithm will not need to examine as many crossing pairs in its combine
step. Let 𝑝𝐿 = (𝑥𝐿, 𝑦𝐿) and 𝑝𝑅 = (𝑥𝑅, 𝑦𝑅) respectively be the points from the pair that are on the left and right of
the median line, and assume without loss of generality that 𝑦𝐿 ≥ 𝑦𝑅; otherwise, replace 𝑝𝐿 with 𝑝𝑅 in the following
analysis. Because this is a closest pair for the entire set of points, 𝑝𝐿 and 𝑝𝑅 are at most 𝛿 = min{𝛿𝐿, 𝛿𝑅} apart, where
as in Lemma 20 above, 𝛿𝐿 and 𝛿𝑅 are respectively the closest-pair distances for just the left and right sides. Therefore,
0 ≤ 𝑦𝐿 − 𝑦𝑅 ≤ 𝛿.

R

ℓ

pL

L

dd

d dpR

3.3. The Closest-Pair Problem 23

Foundations of Computer Science, Release 0.5

We ask: how many of the given points 𝑝′ = (𝑥′, 𝑦′) in the 𝛿-strip can satisfy 0 ≤ 𝑦𝐿 − 𝑦′ ≤ 𝛿? Equivalently, any such
point is in the 𝛿-by-2𝛿 rectangle of the 𝛿-strip whose top edge has 𝑝𝐿 on it. We claim that there can be at most eight
such points, including 𝑝𝐿 itself. (The exact value of eight is not too important; what matters is that it is a constant.) The
key to the proof is that every pair of points must be at least 𝛿 apart, so we cannot fit too may points into the rectangle.
We leave the formal proof to Exercise 25 below.

In conclusion, we have proved the following key structural lemma.

Lemma 23 If a closest pair for the whole set is a crossing pair, then its two points are in the 𝛿-strip, and they are
within 7 positions of each other when all the points in the 𝛿-strip are sorted by 𝑦-coordinate.

So, if a closest pair in the whole set is a crossing pair, then it suffices for the algorithm to compare each point in the
𝛿-strip with the (up to) seven points in the 𝛿-strip that precede it in sorted order by 𝑦-coordinate. By Lemma 23, this
will find a closest pair for the entire set, so the algorithm does not need to check any other pairs. The formal algorithm
is as follows.

Algorithm 24 (2D Closest Pairs)

Input: an array of 𝑛 ≥ 1 points in the plane
Output: a closest pair of the points, and their distance apart (or a dummy output with distance ∞, when 𝑛 = 1)

function ClosestPair2D(𝐴[1, . . . , 𝑛])
if 𝑛 = 1 then return (⊥,⊥,∞)

if 𝑛 = 2 then return (𝐴[1], 𝐴[2], ‖𝐴[1]−𝐴[2]‖)
partition 𝐴 by its median 𝑥-coordinate 𝑚 into arrays 𝐿,𝑅
(ℓ, ℓ′, 𝛿ℓ) = ClosestPair2D(𝐿)
(𝑟, 𝑟′, 𝛿𝑟) = ClosestPair2D(𝑅)
𝛿 = min{𝛿ℓ, 𝛿𝑟}
𝐷 = the set of points whose 𝑥-coordinates are within 𝛿 of 𝑚, sorted by 𝑦-coordinate
for all 𝑝 in 𝐷 do

consider the triple (𝑝, 𝑝′, ‖𝑝− 𝑝′‖) for the (up to) 7 points 𝑝′ preceding 𝑝 in 𝐷

return one of the triples among (ℓ, ℓ′, 𝛿ℓ), (𝑟, 𝑟′, 𝛿𝑟), and those above that has smallest distance

We have already seen that we can presort by 𝑥-coordinate, so that finding the median and constructing 𝐿,𝑅 in each run
of the algorithm takes just 𝑂(𝑛) time. We can also separately presort by 𝑦-coordinate (into a different array) so that
we do not have to sort the 𝛿-strip in each run. Instead, we merely filter the points from the presorted array according to
whether they lie within the 𝛿-strip, which also takes 𝑂(𝑛) time. Finally, we consider at most 7𝑛 = Θ(𝑛) pairs in the
𝛿-strip. So, the non-recursive work takes Θ(𝑛) time, resulting in the runtime recurrence and solution

𝑇 (𝑛) = 2𝑇 (𝑛/2) + Θ(𝑛) = Θ(𝑛 log 𝑛) .

This matches the asymptotic efficiency of the one-dimensional algorithm. The algorithm can be further generalized to
higher dimensions, retaining the Θ(𝑛 log 𝑛) runtime for any fixed dimension.

Exercise 25 Prove that any 𝛿-by-2𝛿 rectangle of the 𝛿-strip can have at most 8 of the given points, where 𝛿 is as
defined in Lemma 20.

Specifically, prove that the left 𝛿-by-𝛿 square of the rectangle can have at most four of the points (all from left
subset), and similarly for the right square.

Hint: Partition each square into four congruent sub-squares, and show that each sub-square can have at most one
point (from the relevant subset).

3.3. The Closest-Pair Problem 24

CHAPTER

FOUR

DYNAMIC PROGRAMMING

The idea of subdividing a large problem instance into smaller instances of the same problem lies at the core of the divide-
and-conquer paradigm. However, for some problems, this recursive subdivision may result in many recoccurences of
the exact same subinstance. Such situations are amenable to the paradigm of dynamic programming, which is applicable
to problems that have the following features:

1. The principle of optimality, also known as an optimal substructure. This means that an optimal solution to a
larger instance is made up of optimal solutions to smaller subinstances. For example, shortest-path problems
on graphs generally obey the principle of optimality. If a shortest path between vertices 𝑎 and 𝑏 in a graph
goes through some other vertex 𝑐, so that the path has the form 𝑎, 𝑢1, . . . , 𝑢𝑗 , 𝑐, 𝑣1, . . . , 𝑣𝑘, 𝑏, then the subpath
𝑎, 𝑢1, . . . , 𝑢𝑗 , 𝑐 must be a shortest path from 𝑎 to 𝑐, and similarly for the subpath from 𝑐 to 𝑏.

2. Overlapping subinputs/subproblems. This means that the same input occurs many times when recursively de-
composing the original instance down to the base cases. A classic example of this is a recursive computation
of the Fibonacci sequence, which follows the recurrence 𝐹 (𝑛) = 𝐹 (𝑛 − 1) + 𝐹 (𝑛 − 2). The same subin-
stances appear over and over again, making a naïve computation takes time exponential in 𝑛. The characteristic
of overlapping subinputs is what distinguishes dynamic programming from divide and conquer.

𝐹(4)

𝐹(3) 𝐹(2)

𝐹(2) 𝐹(1) 𝐹(1)

𝐹(1) 𝐹(0)

𝐹(0)

4.1 Implementation Strategies

The first, and typically most challenging and creative, step in formulating a dynamic-programming solution to a problem
is to determine a recurrence relation that solutions adhere to. In the case of the Fibonacci sequence, for example, such
a recurrence (and base cases) are already given, as:

𝐹 (𝑛) =

{︃
1 if 𝑛 ≤ 1

𝐹 (𝑛− 1) + 𝐹 (𝑛− 2) otherwise.

Once we have established a recurrence relation and base cases, we can turn to an implementation strategy for computing
the desired value(s) of the recurrence. There are three typical patterns:

25

Foundations of Computer Science, Release 0.5

1. Top-down recursive. The naïve implementation directly translates the recurrence relation into a recursive algo-
rithm, as in the following:

Algorithm 26 (Top-down Fibonacci)

Input: an integer 𝑛 ≥ 0
Output: the 𝑛th Fibonacci number

function FibRecursive(𝑛)
if 𝑛 ≤ 1 then return 1

return FibRecursive(𝑛− 1) + FibRecursive(𝑛− 2)

As mentioned previously, the problem with this strategy is that it repeats the same computations many times,
to the extent that the overall number of recursive calls is exponential in 𝑛. More generally, naïve top-down
implementations are wasteful when there are overlapping subinputs. (They do not use any auxiliary storage, so
they are space efficient, but this is usually outweighed by their poor running times.9)

2. Top-down memoized, or simply memoization. This approach also translates the recurrence relation into a recur-
sive algorithm, but it saves every computed result in a lookup table, and queries that table before doing any new
computation. The following is an example:

Algorithm 27 (Memoized Fibonacci)

Input: an integer 𝑛 ≥ 0
Output: the 𝑛th Fibonacci number

memo = an empty table (e.g., an array or dictionary)
function FibMemoized(𝑛)

if 𝑛 ≤ 1 then return 1

if memo(𝑛) is not defined then
memo(𝑛) = FibMemoized(𝑛− 1) + FibMemoized(𝑛− 2)

return memo(𝑛)

This memoized algorithm avoids recomputing the answer for any previously encountered input. Any call to
FibMemoized(𝑛), where 𝑛 is not a base case, first checks the memo table to see if FibMemoized(𝑛) has been
computed before. If not, it computes it recursively as above, saving the result in memo. If the subinput was
previously encountered, the algorithm just returns the previously computed result.

Memoization trades space for time. The computation of FibMemoized(𝑛) requires 𝑂(𝑛) auxiliary space to
store the results for each subinput. On the other hand, since the answer to each subinput is computed only once,
the overall number of operations required is 𝑂(𝑛), a significant improvement over the exponential naïve algo-
rithm. However, for more complicated algorithms, it can be harder to analyze the running time of the associated
algorithm.

3. Bottom up.10 Rather than starting with the desired input and recursively working our way down to the base cases,
we can invert the computation to start with the base case(s), and then work our way up to the desired input. As in
recursion with memoization, we need a table to store the results for the subinputs we have handled so far, since
those results will be needed to compute answers for larger inputs.

The following is a bottom-up implementation for computing the Fibonacci sequence:

9 Space is required to represent the recursion stack; for the Fibonacci computation, the recursion depth can be as large as nearly 𝑛. For other
algorithms, however, the naïve implementation can incur smaller space costs than the table-based approaches.

10 In many contexts, the term “dynamic programming” is restricted specifically to the bottom-up implementation strategy, but the term can also
encompass recursion with memoization. In this text, we mainly adopt the bottom-up strategy.

4.1. Implementation Strategies 26

Foundations of Computer Science, Release 0.5

Algorithm 28 (Bottom-up Fibonacci)

Input: an integer 𝑛 ≥ 0
Output: the 𝑛th Fibonacci number

function FibBottomUp(𝑛)
allocate table[0, . . . , 𝑛]
table[0] = table[1] = 1
for 𝑖 = 2 to 𝑛 do

table[𝑖] = table[𝑖− 1] + table[𝑖− 2]

return table[𝑛]

We start with an empty table and populate it with the results for the base cases. Then we work our way forward,
computing the result for each larger input from the previously computed results for the smaller inputs. We
stop when we reach the desired input, and return the result. The following is an illustration of the table that is
constructed during the computation of FibBottomUp(9).

1 1 2 3 5 8 13 21 34 55
0 1 2 3 4 5 6 7 8 9

+

In the loop for a particular value of 𝑖, earlier iterations have already computed and stored the (𝑖−1)st and (𝑖−2)nd
Fibonacci numbers—stored in table[𝑖 − 1] and table[𝑖 − 2], respectively—so the algorithm just looks up those
results from the table and adds them to get the 𝑖th Fibonacci number, which it stores in table[𝑖].

Like memoization, the bottom-up approach trades space for time. In the case of FibBottomUp(𝑛), it too uses
a total of 𝑛 array entries to store the results of the subinstances, and the overall number of additions required is
also less than 𝑛.

In the specific case of computing the Fibonacci sequence, we don’t actually need to keep the entire table for the
entire computation: once we are computing the 𝑖th Fibonacci number, we no longer need the (𝑖 − 3)rd table
entry or lower. So, at any moment we need only keep the two previously computed results. This lowers the
storage overhead to just 𝑂(1) entries. However, this kind of space savings doesn’t work in general for dynamic
programming; other problems require maintaining most or all of the table throughout the computation.

The three implementation strategies have different tradeoffs. The naïve top-down strategy often takes the least imple-
mentation effort, as it is a direct translation of the recurrence relation to code. It can be the most space efficient (though
including the space used by the recursive call stack complicates the comparison), but more importantly, it often is very
inefficient in time, due to the many redundant computations.

Top-down recursion with memoization adds some implementation effort in working with a lookup table, and can require
special care to implement correctly and safely in practice.11

Its main advantages over the bottom-up approach are:

• It maintains the same structure as the recurrence relation, so it typically is simpler to reason about and implement.

• It computes answers for only the subinputs that are actually needed. If the recurrence induces a “sparse” computa-
tion, meaning that it requires answers for relatively few of the smaller subinputs, then the top-down memoization

11 In particular, it might require a global variable for the “memo table,” which is not considered a good programming technique due to its risks.
For example, completely unrelated code might have access to the same global variable, resulting in incorrect results. Fortunately, some programming
languages provide built-in facilities for converting a naïve recursive function into a memoized one, such as @functools.lru_cache in Python.

4.1. Implementation Strategies 27

Foundations of Computer Science, Release 0.5

approach can be more time and space efficient than the bottom-up strategy.

However, top-down memoization often suffers from higher constant-factor overheads than the bottom-up approach
(e.g., function-call overheads and working with sparse lookup structures that are less time efficient than dense data
structures). Thus, the bottom-up approach is preferable when answers to a large fraction of the subinstances are needed
for computing the desired result, which is usually the case for dynamic programming problems.

4.2 Weighted Task Selection

As a first nontrivial example of dynamic programming, let us consider a problem called weighted task selection (WTS).
In this problem, we are given a list of 𝑛 tasks 𝑇1, . . . , 𝑇𝑛. Each task 𝑇𝑖 is a triple of numbers (𝑠𝑖, 𝑓𝑖, 𝑣𝑖) with 𝑠𝑖 < 𝑓𝑖,
where 𝑠𝑖 denotes the task’s starting time, 𝑓𝑖 denotes its finishing time, and 𝑣𝑖 denotes its value. A pair of tasks 𝑇𝑖, 𝑇𝑗

overlap if 𝑠𝑖 ≤ 𝑠𝑗 < 𝑓𝑖 or 𝑠𝑗 ≤ 𝑠𝑖 < 𝑓𝑗 , i.e., if the intersection of their time intervals [𝑠𝑖, 𝑓𝑖) ∩ [𝑠𝑗 , 𝑓𝑗) is nonempty.
The goal in WTS is to select an optimal set of (pairwise) non-overlapping tasks, which is one that maximizes the total
value of the selected tasks.

Note that there may be multiple different sets that have the same optimal value, so we say “an” optimal set, rather than
“the” optimal set. Throughout this treatment it is convenient to assume without loss of generality that the tasks are
sorted by their finish times 𝑓𝑖 (which are not necessarily distinct); in particular, we can sort them in 𝑂(𝑛 log 𝑛) time.

The figure below shows an example instance of the WTS problem with eight tasks. The set {𝑇5, 𝑇7} has a large total
value of 13 + 10 = 23, but it is overlapping, so it cannot be selected. The set {𝑇1, 𝑇5, 𝑇6} is not overlapping, and has
a total value of 5 + 13 + 2 = 20, but it turns out that this is not optimal. An optimal set of tasks is {𝑇1, 𝑇3, 𝑇7}, and
has a total value of 5 + 7 + 10 = 22. In fact, in this case it is the unique optimal set (but again, in general an optimal
set will not be unique).

0 1 2 3 4 5 6 7 8 9 10

5
T1

7
T3

3
T2

4
T4

13
T5

2
T6

10
T7

4
T8

This problem models various situations including scheduling of jobs on a single machine, choosing courses to take,
etc. So it is indeed useful, but can we solve it efficiently?

The design and analysis of a dynamic programming algorithm usually follows the following template, or “recipe”, of
steps:

1. Define and focus on the “value version” of the problem. For an optimization problem like WTS, temporarily
put aside the goal of finding an optimal solution itself, and simply aim to find the value of an optimal solution
(e.g., the lowest cost, the largest total value, etc.). In some cases, the original problem is already stated in a value
version—e.g., count the number of objects meeting certain constraints—so there is nothing to do in this step.

2. Devise a recurrence for the value in question, including base case(s), by understanding how a solution is made
up of solutions to appropriate subinputs. This step usually requires some creativity and insight, both to discover
a good set of relevant subinputs, and to see how optimal solutions are related across subinputs.

4.2. Weighted Task Selection 28

Foundations of Computer Science, Release 0.5

3. By understanding the dependencies between subinputs as given by the recurrence, implement the recurrence
in (pseudo)code that fills a table in a bottom-up fashion. Given the recurrence, this step is usually fairly “me-
chanical” and does not require a great deal of creativity.

4. If applicable, extend the pseudocode to solve the original problem using “backtracking”. Given the recurrence
and an understanding of why it is correct, this is also usually quite mechanical.

5. Perform a runtime analysis of the algorithm. This is also usually fairly mechanical, and follows from analyzing
the number of table entries that are filled, and the amount of time it takes to fill each entry (or in some cases, all
the entries in total).

Notice that all steps but the second one are fairly mechanical, but they rely crucially on the recurrence derived in that
step.

For example, for the above example instance of our task-selection problem, we first want to focus on designing an
algorithm that simply computes the optimal value 22, instead of directly computing an optimal set of non-overlapping
tasks {𝑇1, 𝑇3, 𝑇7}. As we will see, a small enhancement of the value-optimizing algorithm will also give us a selection
of tasks that achieves the optimal value, so we actually lose nothing by initially focusing on the value alone. To do this,
we first need to come up with a recurrence that yields the optimal value for a given set of tasks.

For 0 ≤ 𝑖 ≤ 𝑛, let OPT(𝑖) denote the optimal value that can be obtained by selecting from among just the tasks
𝑇1, . . . , 𝑇𝑖. The base case is 𝑖 = 0, for which the optimal value is trivially OPT(0) = 0, because there are no tasks
available to select. Now suppose that 𝑖 ≥ 1, and consider task 𝑇𝑖 (which has the latest finish time among those we are
considering). There are two possibilities: either 𝑇𝑖 is in some optimal selection of tasks (from just 𝑇1, . . . , 𝑇𝑖), or it is
not.

• If 𝑇𝑖 is not in an optimal selection, then OPT(𝑖) = OPT(𝑖− 1). This is because there is an optimal selection for
all 𝑖 tasks that selects from just the first 𝑖− 1 tasks, so the availability of 𝑇𝑖 does not affect the optimal value.

• If 𝑇𝑖 is in an optimal solution, then OPT(𝑖) = 𝑣𝑖 + OPT(𝑗), where 𝑗 < 𝑖 is the maximum index such that 𝑇𝑗

and 𝑇𝑖 do not overlap, i.e., 𝑓𝑗 ≤ 𝑠𝑖 (taking 𝑗 = 0 if no such 𝑇𝑗 exists). This is because in any optimal selection
𝑆 that has 𝑇𝑖, the other selected tasks must come from 𝑇1, . . . , 𝑇𝑗 (because these are the tasks that don’t overlap
with 𝑇𝑖), and those selected tasks must have optimal value (among the first 𝑗 tasks). For if they did not, we could
replace them with a higher-value selection from 𝑇1, . . . , 𝑇𝑗 , then include 𝑇𝑖 to get a valid selection of tasks with
a higher value than that of 𝑆, contradicting the assumed optimality of 𝑆.

Overall, the optimal value is the maximum of what can be obtained from these two possibilities. Therefore, we obtain
the final recurrence as follows, for all 𝑖 ≥ 1:

OPT(𝑖) = max{OPT(𝑖− 1), 𝑣𝑖 + OPT(𝑗)} for the maximum 𝑗 < 𝑖 s.t. 𝑓𝑗 ≤ 𝑠𝑖 .

To ensure that such a 𝑗 is always defined, we adopt the convention that 𝑓0 = −∞, so that 𝑗 = 0 is an option (in which
case the second value in the above max expression is just 𝑣𝑖 + OPT(0) = 𝑣𝑖).

Now that we have a recurrence, we can write pseudocode that implements it by filling a table in a bottom-up manner.

Algorithm 29 (Weighted Task Selection, Value Version)

Input: array of tasks 𝑇 [𝑖] = (𝑠𝑖, 𝑓𝑖, 𝑣𝑖)
Output: maximum achievable value for (pairwise) non-overlapping tasks

function OptimalTasksValue(𝑇 [1, . . . , 𝑛])
allocate table[0, . . . , 𝑛]
table[0] = 0
for 𝑖 = 1 to 𝑛 do

find the maximum 𝑗 < 𝑖 such that 𝑓𝑗 ≤ 𝑠𝑖 ◁ convention: 𝑓0 = −∞
table[𝑖] = max{table[𝑖− 1], 𝑣𝑖 + table[𝑗]}

4.2. Weighted Task Selection 29

Foundations of Computer Science, Release 0.5

return table[𝑛]

A naïve implementation of this algorithm, which just does a linear scan inside the loop to determine 𝑗, takes 𝑂(𝑛2)
time because there are two nested loops that each take at most 𝑛 iterations. Since the tasks are sorted by finish time,
a more sophisticated implementation would use a binary search, which would take just 𝑂(log 𝑛) time for the inner
(search) loop, and hence 𝑂(𝑛 log 𝑛) time overall. (Recall that the initial time to sort the tasks by finish time is also
𝑂(𝑛 log 𝑛).)

For a better understanding of this algorithm, let us see the filled table for the example instance given above. We see
that indeed OPT(𝑛) = OPT(8) = 22, which is the correct answer. (We can also observe that entry 7 of the table is
also 22, indicating that there is a globally optimal selection from among just the first 7 tasks.)

Table 4.1: Example Table of Weighted Task Selection DP Algorithm

Index 𝑖 0 1 2 3 4 5 6 7 8
OPT(𝑖) 0 5 5 12 16 18 20 22 22

Now that we have an efficient algorithm for the value version of the problem, let us see how to solve the problem we
actually care about, which is to obtain an optimal selection of tasks. The idea is to keep some additional information
showing “why” each entry of the table has the value it does, and to construct an optimal selection by “backtracking”
through the table. That is, we enhance the algorithm to add “pointers” (sometimes called “breadcrumbs”) that store
how each cell in the table was filled, based on the recurrence and the values of the previous cells.

To carry out this approach for our problem, we will add pointers, denoted by backtrack[𝑖], into our algorithm. When
we fill in table[𝑖], we also set backtrack[𝑖] = 𝑖 − 1 if we set table[𝑖] = table[𝑖 − 1], otherwise we set backtrack[𝑖] = 𝑗
where 𝑗 is defined as in the recurrence and algorithm. Recalling the reasoning for why the recurrence is valid, these
two possibilities respectively correspond to task 𝑇𝑖 not being in, or being in, an optimal subset of tasks from 𝑇1, . . . , 𝑇𝑖.
The value of backtrack[𝑖] indicates the prefix of tasks from which the rest of that optimal subset is drawn.

Given the two arrays (table, backtrack), we can now construct an optimal set of tasks, not just the optimal value. Start
with index 𝑖 = 𝑛. Recall that table[𝑖] > table[𝑖 − 1] if and only if 𝑇𝑖 is in some optimal selection of tasks. So, if
table[𝑖] > table[𝑖− 1], then we include 𝑇𝑖 in the output selection, otherwise we skip it. We then “backtrack” by setting
𝑖 = backtrack[𝑖] to consider the appropriate prefix of tasks, and repeat this process until we have backtracked to the
beginning.

The modified full pseudocode, including the backtracking, can be seen below.

Algorithm 30 (Weighted Task Selection, with Backtracking)

Input: array of tasks 𝑇 [𝑖] = (𝑠𝑖, 𝑓𝑖, 𝑣𝑖), sorted by 𝑓𝑖
Output: values and backtracking information

function OptimalTasksInfo(𝑇 [1, . . . , 𝑛])
allocate table[0, . . . , 𝑛], backtrack[1, . . . , 𝑛]
table[0] = 0
for 𝑖 = 1 to 𝑛 do

find the maximum 𝑗 < 𝑖 such that 𝑓𝑗 ≤ 𝑠𝑖 (where 𝑓0 = −∞)
table[𝑖] = max{table[𝑖− 1], 𝑣𝑖 + table[𝑗]}
if table[𝑖] = table[𝑖− 1] then

backtrack[𝑖] = 𝑖− 1
else

backtrack[𝑖] = 𝑗

return (table, backtrack)
Input: array of tasks 𝑇 [𝑖] = (𝑠𝑖, 𝑓𝑖, 𝑣𝑖), sorted by 𝑓𝑖
Output: a set of non-overlapping tasks having maximum total value

4.2. Weighted Task Selection 30

Foundations of Computer Science, Release 0.5

function OptimalTasks(𝑇 [1, . . . , 𝑛])
(table, backtrack) = OptimalTasksInfo(𝑇)
𝑖 = 𝑛
𝑆 = ∅
while 𝑖 > 0 do

if table[𝑖] > table[𝑖− 1] then
𝑆 = 𝑆 ∪ {𝑇𝑖}

𝑖 = backtrack[𝑖]
return 𝑆

4.3 Longest Increasing Subsequence

Given a sequence 𝑆 of numbers, an increasing subsequence of 𝑆 is a subsequence whose elements are in strictly
increasing order. As with a subsequence of a string, the elements need not be contiguous in the original sequence, but
they must be taken in their original order.

Now suppose we want to find a longest increasing subsequence (LIS) of a given input sequence 𝑆, i.e., an increasing
subsequence with the maximum number of values in it. As in the task-selection problem, we say “an” LIS, rather than
“the” LIS, because an LIS may not be unique. For example, the sequence 𝑆 = (0, 8, 7, 12, 5, 10, 4, 14, 3, 6) has several
longest increasing subsequences:

• (0, 8, 12, 14),

• (0, 8, 10, 14),

• (0, 7, 12, 14),

• (0, 7, 10, 14),

• (0, 5, 10, 14).

As in the previous problem of task selection, before concerning ourselves with finding an LIS itself, we first devise a
suitable “value version” of the problem and a recurrence for it. As a first attempt, let the input sequence be 𝑆[1, . . . , 𝑁],
and consider the subproblems of computing the LIS length for each prefix sequence 𝑆[1, . . . , 𝑖], for 𝑖 = 1, . . . , 𝑁 . For
the example of 𝑆 = (0, 8, 7, 12, 5, 10, 4, 14, 3, 6), we can determine these LIS lengths by hand.

1 2 2 3 3 3 3 4 4 4
1 2 3 4 5 6 7 8 9 10

Unfortunately, it is not clear how to relate the LIS length for a sequence to the LIS lengths for its prefixes. In the example
above, 𝑆[1, . . . , 9] and 𝑆[1, . . . , 10] have the same LIS length, but that is not the case for 𝑆[1, . . . , 7] and 𝑆[1, . . . , 8].
Yet in both cases, the one additional element is larger than the previous one in the sequence (i.e., 𝑆[10] > 𝑆[9] and
𝑆[8] > 𝑆[7]). It seems that, without knowing something about the contents of an LIS itself (and not just the LIS length),
it is unclear how the LIS length for a sequence is related to those for its prefixes.

In order to devise a dynamic-programming solution for the LIS problem, we need to formulate a “value version” of the
problem that satisfies the optimal-substructure property. A clever idea that turns out to work is to restrict our view to
subsequences of 𝑆[1, . . . , 𝑖] that include the last element 𝑆[𝑖]. More specifically, for any 𝑖 ≥ 1, define END-LIS(𝑖) to
be the length of any longest increasing subsequence of 𝑆[1, . . . , 𝑖] that includes (and therefore ends with) 𝑆[𝑖]. As we
will see next, this restriction is just enough information about the contents of an LIS to satisfy the optimal-substructure
property, and thereby derive a useful recurrence.

For both the base case and recursive cases, it is convenient to define a “sentinel” value of 𝑆[0] = −∞. This element
can be seen as the initial “placeholder” element in any LIS of any prefix 𝑆[1, . . . , 𝑖], but it does not contribute to the

4.3. Longest Increasing Subsequence 31

Foundations of Computer Science, Release 0.5

length. With this convention, in the base case 𝑖 = 0 we trivially have END-LIS(0) = 0, because the only possible
subsequence consists merely of 𝑆[0], which has length zero.

We next derive a recurrence for END-LIS(𝑖) for any 𝑖 ≥ 1, by establishing an “optimal substructure” property for
longest increasing subsequences.

Let 𝐿 be any LIS of 𝑆[1, . . . , 𝑖] that ends with 𝑆[𝑖], and let 𝐿′ be 𝐿 with this last element removed. Then the last
element of 𝐿′ (which might be the sentinel value 𝑆[0]) must be 𝑆[𝑗] for some 0 ≤ 𝑗 < 𝑖 where 𝑆[𝑗] < 𝑆[𝑖], because 𝐿
is an increasing subsequence of 𝑆.

We claim that 𝐿′ must be an LIS of 𝑆[1, . . . , 𝑗] that ends with 𝑆[𝑗]. For if it is not, then there would exist some
increasing subsequence 𝐿* of 𝑆[1, . . . , 𝑗] that ends with 𝑆[𝑗] < 𝑆[𝑖], and is longer than 𝐿′. Then, 𝐿* followed by 𝑆[𝑖]
would be an increasing subsequence of 𝑆[1, . . . , 𝑖] that ends with 𝑆[𝑖], and is longer than 𝐿 (because 𝐿* is longer than
𝐿′). But this would contradict our initial hypothesis, that 𝐿 is a longest such subsequence! So, such a 𝐿* cannot exist,
and the claim is proved.

In what we have just shown, there is no restriction on the value of 0 ≤ 𝑗 < 𝑖, other than the requirement that𝑆[𝑗] < 𝑆[𝑖].
Indeed, for any such 𝑗, any LIS of 𝑆[1, . . . , 𝑗] that ends with 𝑆[𝑗] can be extended, by appending 𝑆[𝑖], into an LIS of
𝑆[1, . . . , 𝑖] that ends with 𝑆[𝑖]. Therefore, END-LIS(𝑖) is one larger than the largest of all these options, taken over all
valid 𝑗. In summary, we have proved the following base case and recurrence for END-LIS:

END-LIS(𝑖) =

{︃
0 if 𝑖 = 0

1 +max{END-LIS(𝑗) : 0 ≤ 𝑗 < 𝑖 and 𝑆[𝑗] < 𝑆[𝑖]} if 𝑖 ≥ 1.

The following gives the values of this recurrence for the example sequence 𝑆 above, and also shows which values are
referenced when evaluating END-LIS(10) according to the recurrence.

0 8 7 12 5 10 4 14 3 6
1 2 3 4 5 6 7 8 9 10

1 2 2 3 2 3 2 4 2 3
1 2 3 4 5 6 7 8 9 10

𝑆

𝐿

Using the above recurrence, we can straightforwardly write a bottom-up algorithm that computes END-LIS(𝑖) for each
𝑖 = 0, 1, . . . , 𝑁 . Once we have these values, the actual (uncontrained) LIS length for 𝑆 is simply the maximum value
of END-LIS(𝑖), taken over all 𝑖. (This is because an LIS of 𝑆 must end with some 𝑆[𝑖] value, so its length is given by
END-LIS(𝑖).) As with weighted task selection, we can also store “backpointers” while filling in the END-LIS table,
and backtrack through the table to find the actual elements of a longest increasing subsequence.

How efficient is this algorithm? We must compute the 𝑁 (non-base-case) values of END-LIS(𝑖) (for 𝑖 = 1, . . . , 𝑁),
and for each value we scan over all the elements of 𝑆[0, . . . , 𝑖 − 1] (to compare them with 𝑆[𝑖]), as well as all the
previous values of END-LIS in the worst case. Thus, it takes 𝑂(𝑁) time to compute END-LIS(𝑖) for a single 𝑖, and
hence 𝑂(𝑁2) time to compute them all. Then, finding the maximum END-LIS(𝑖) value takes 𝑂(𝑛) time, as does the
backtracking. So the algorithm as a whole takes 𝑂(𝑁2) time, and it uses 𝑂(𝑁) space.

4.3. Longest Increasing Subsequence 32

Foundations of Computer Science, Release 0.5

4.4 Longest Common Subsequence

As a richer example of dynamic programming, consider the problem of finding a longest common subsequence of two
given strings. A subsequence of a string is a selection of zero or more of its characters, preserving their original order.
(Alternatively, a subsequence is obtained by deleting zero or more of the string’s characters.) The characters of the
subsequence need not be adjacent in the original string.12 For example, the following are subsequences of the string
Fibonacci sequence:

• Fun

• seen

• cse

A common subsequence (CS) of two strings is a string that can be obtained as a subsequence of both strings, and
a longest common subsequence (LCS) is one of maximum length. For instance, for the two strings Go blue! and
Wolverines, some common subsequences are l, le, and ole. There is no common subsequence of length 4 or more,
so ole is an LCS. As in the other problems considered above, in general an LCS is not unique (there can be multiple
common subsequences of maximum length), though in this specific example it is unique.

Finding a longest common subsequence is useful in many applications, including DNA sequencing and computing the
similarity between two texts. So, we wish to devise an efficient algorithm for determining an LCS of two input strings.

As we did above, let’s temporarily set aside the problem of finding an LCS string itself, and first focus on just computing
its length. For any two strings 𝑆1, 𝑆2, define LCS(𝑆1, 𝑆2) to be the length of any LCS of the strings. To get a dynamic-
programming algorithm, we first need to discover a recurrence relation and base case(s) that relate the LCS length for
𝑆1 and 𝑆2 to the LCS lengths for appropriate smaller subinputs.

Let 𝑁,𝑀 respectively be the lengths of 𝑆1, 𝑆2. First, we give the trivial base cases: if either string is the empty
string—i.e., if 𝑁 = 0 or 𝑀 = 0 (or both)—then clearly LCS(𝑆1, 𝑆2) = 0, because the only common subsequence is
the empty sequence.

Now suppose that both 𝑁,𝑀 ≥ 1, and consider just the last character in each of the strings.13 There are two possibil-
ities: either these characters are the same, or they are different. We first consider the consequences of the former case,
which is depicted in the following figure.

X

X
=

𝑁 − 1 symbols

𝑀 − 1 symbols

Lemma 31 If 𝑆1[𝑁] = 𝑆2[𝑀], then there exists some LCS 𝐶 of 𝑆1 and 𝑆2 that is obtained by selecting both
𝑆1[𝑁] and 𝑆2[𝑀] (and therefore ends with that character).

We emphasize that Lemma 31 says not only that 𝐶 ends with the character that appears at the end of both strings, but
also that it specifically selects both 𝑆1[𝑁] and 𝑆2[𝑀]. For example, if 𝑆1 = xyx and 𝑆2 = x, then x is an LCS, but

12 Contrast this with a substring, in which all the selected characters must be adjacent in the original string.
13 It is equally valid to compare the first characters of each string, but it turns out to be more convenient to work with the final characters, due to

the indexing in the recurrences.

4.4. Longest Common Subsequence 33

Foundations of Computer Science, Release 0.5

selecting the first x from 𝑆1 would not satisfy the claim, while taking the final x from 𝑆1 would. (The distinction is
important for what we will show below.)

Proof 32 Let 𝑥 denote the character 𝑆1[𝑁] = 𝑆2[𝑀]. First consider any common subsequence 𝐶 ′ of 𝑆1 and 𝑆2

that selects neither 𝑆1[𝑁] nor 𝑆2[𝑀]. Then we can get a common subsequence that is even longer than 𝐶 ′ by
also selecting 𝑆1[𝑁] = 𝑆2[𝑀] and appending it to 𝐶 ′, so 𝐶 ′ is not an LCS. Therefore, any LCS must select at
least one of 𝑆1[𝑁] or 𝑆2[𝑀].

Now let 𝐶* be an arbitrary LCS of 𝑆1 of 𝑆2. If 𝐶* happens to select both 𝑆1[𝑁] and 𝑆2[𝑀], then the claim holds
with 𝐶 = 𝐶*, and we are done. So, suppose that 𝐶* selects just one of those two characters, say 𝑆1[𝑁] without
loss of generality (the other case proceeds symmetrically). Since 𝐶* ends with 𝑥 = 𝑆1[𝑁], the final selected
character of 𝑆2 is also 𝑥, which appears somewhere before 𝑆2[𝑀]. So, we can modify the selected characters of
𝑆2 to “unselect” that final 𝑥 and select 𝑆2[𝑀] = 𝑥 instead. This results in the same common subsequence string
𝐶 = 𝐶*, but it is obtained by selecting both 𝑆1[𝑁] and 𝑆2[𝑀], and it is an LCS of 𝑆1, 𝑆2 because 𝐶* is an LCS
of 𝑆1, 𝑆2 by hypothesis. This proves the claim. □

We now get the following consequence of Lemma 31. It says that when 𝑆1[𝑁] = 𝑆2[𝑀], an LCS of 𝑆1 and 𝑆2 can
be obtained by taking any LCS of the prefix strings 𝑆1[1, . . . , 𝑁 − 1] and 𝑆2[1, . . . ,𝑀 − 1], then appending the final
shared character.

Corollary 33 If 𝑆1[𝑁] = 𝑆2[𝑀], the common subsequences of 𝑆1 and 𝑆2 that select both 𝑆1[𝑁], 𝑆2[𝑀] are
exactly the common subsequences of 𝑆1[1, . . . , 𝑁 − 1] and 𝑆2[1, . . . ,𝑀 − 1], with 𝑆1[𝑁] = 𝑆2[𝑀] also selected
and appended. It follows that

LCS(𝑆1, 𝑆2) = 1 + LCS(𝑆1[1, . . . , 𝑁 − 1], 𝑆2[1, . . . ,𝑀 − 1]) .

Proof 34 In one direction, we can take any common subsequence of the prefix strings 𝑆1[1, . . . , 𝑁 −
1], 𝑆2[1, . . . ,𝑀 − 1], then append 𝑆1[𝑁] = 𝑆2[𝑀], to get a common subsequence of 𝑆1, 𝑆2 that selects both
𝑆1[𝑁], 𝑆2[𝑀]. In the other direction, let𝐶 be any common subsequence of𝑆1, 𝑆2 that selects both𝑆1[𝑁], 𝑆2[𝑀];
these selections must correspond to the final character of 𝐶. So, removing the final character of 𝐶 corresponds to
“unselecting” 𝑆1[𝑁] and 𝑆2[𝑀], which yields a common subsequence of the prefix strings. This proves the first
claim.

For the second claim, the above correspondence implies that any longest common subsequence of 𝑆1, 𝑆2 that
selects both 𝑆1[𝑁], 𝑆2[𝑀] is in fact a longest common subsequence of the prefix strings, plus one character.
Moreover, Lemma 31 says that the “selects both 𝑆1[𝑁], 𝑆2[𝑀]” restriction does not affect the optimal length,
because there exists an LCS of 𝑆1, 𝑆2 that meets this requirement. So, the LCS length for 𝑆1, 𝑆2 (without any
requirement on what characters are selected) is indeed one larger than the LCS length for the prefix strings, as
claimed. □

Now we consider the case where the final characters of the two strings are different. The following lemma says that
the LCS length is the maximum of the two LCS lengths where one of the strings remains unmodified, and the other is
truncated by removing its final character. See the depiction in the following figure.

4.4. Longest Common Subsequence 34

Foundations of Computer Science, Release 0.5

Y

X

≠

𝑁 − 1 symbols

𝑀 symbols

Y

X

≠

𝑁 symbols

𝑀 − 1 symbols

Lemma 35 If 𝑆1[𝑁] ̸= 𝑆2[𝑀], then

LCS(𝑆1, 𝑆2) = max{LCS(𝑆1[1, . . . , 𝑁 − 1], 𝑆2) , LCS(𝑆1, 𝑆2[1, . . . ,𝑀 − 1])} .

Proof 36 In any common subsequence of 𝑆1, 𝑆2, the final character of at least one of the strings is not selected
(because the final characters would have to appear at the end of the subsequence, and they do not match). Note
that this could apply to either, or both, of the strings.

Next, observe that any common subsequence of 𝑆1, 𝑆2 that does not select 𝑆1[𝑁] is also a common subsequence
of 𝑆1[1, . . . , 𝑁 − 1] and 𝑆2, and vice versa. In other words, these two collections of subsequences are identical,
and hence have the same maximum length.

Symmetrically, the same correspondence holds between the common subsequences of 𝑆1, 𝑆2 that do not select
𝑆2[𝑀], and the common subsequences of 𝑆1 and 𝑆2[1, . . . ,𝑀 − 1].

Since any common subsequence of 𝑆1, 𝑆2 does not select 𝑆1[𝑁] or 𝑆2[𝑀] (or both), the length of a longest
common subsequence of 𝑆1, 𝑆2 is the maximum of the longest in each of the above two cases, as claimed. □

Putting all of the above together, we have arrived at our final overall recurrence for the LCS length:

Theorem 37 For 𝑆1 = 𝑆1[1, . . . , 𝑁] and 𝑆2 = 𝑆2[1, . . . ,𝑀],

LCS(𝑆1, 𝑆2) =

⎧⎪⎨⎪⎩
0 if 𝑁 = 0 or 𝑀 = 0,
1 + LCS(𝑆1[1, . . . , 𝑁 − 1], 𝑆2[1, . . . ,𝑀 − 1]) if 𝑆1[𝑁] = 𝑆2[𝑀],
max(LCS(𝑆1[1, . . . , 𝑁 − 1], 𝑆2),LCS(𝑆1, 𝑆2[1, . . . ,𝑀 − 1])) if 𝑆1[𝑁] ̸= 𝑆2[𝑀].

Now that we have a complete recurrence relation, we can proceed to give an algorithm, using the bottom-up approach.

We first observe that the recurrence refers only to subinputs consisting of a prefix 𝑆1 and a prefix of 𝑆2. So, our
algorithm will compute and store the value of the LCS function for every pair of such prefixes. That is, it will fill

4.4. Longest Common Subsequence 35

Foundations of Computer Science, Release 0.5

an (𝑁 + 1)-by-(𝑀 + 1) table in which the (𝑖, 𝑗)th entry is LCS(𝑆1[1, . . . , 𝑖], 𝑆2[1, . . . , 𝑗]), for all 𝑖 ∈ [0, 𝑁] and
𝑗 ∈ [0,𝑀]. (By convention, 𝑆1[1, . . . , 0] denotes the empty string, and similarly for 𝑆2[1, . . . , 0].).

For example, below is the complete table for the strings 𝑆1 = Go blue! and 𝑆2 = Wolverines, which has been filled
using the recurrence from Theorem 37.

W o l v e r i n e s

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1

0 0 1 2 2 2 2 2 2 2 2

0 0 1 2 2 2 2 2 2 2 2

0 0 1 2 2 3 3 3 3 3 3

0 0 1 2 2 3 3 3 3 3 3

G

o

b

l

u

e

!

As mentioned above, the (𝑖, 𝑗)th entry of the table holds the LCS length for 𝑆1[1, . . . , 𝑖] and 𝑆2[1, . . . , 𝑗]. Using the
recurrence relation, we can compute the value of the (𝑖, 𝑗)th entry from the entries at the three locations (𝑖− 1, 𝑗 − 1),
(𝑖−1, 𝑗), and (𝑖, 𝑗−1); the first one is used when 𝑆1[𝑖] = 𝑆2[𝑗], and the latter two are used when 𝑆1[𝑖] ̸= 𝑆2[𝑗]. Entry
(𝑁,𝑀) holds the LCS length for the full strings 𝑆1[1, . . . , 𝑁] and 𝑆2[1, . . . ,𝑀].

The last thing we need before writing the algorithm is to determine a valid order in which to compute and fill the
table entries. The only requirement is that before computing entry (𝑖, 𝑗) for 𝑖, 𝑗 > 0, the entries (𝑖 − 1, 𝑗 − 1), (𝑖 −
1, 𝑗), (𝑖, 𝑗 − 1) should already have been computed and filled in. There are multiple orders that meet this requirement;
we will compute the entries row by row from top to bottom (i.e., with increasing 𝑖), moving left to right within each
row (i.e., with increasing 𝑗).

We now give the pseudocode for computing all the entries of the table.

4.4. Longest Common Subsequence 36

Foundations of Computer Science, Release 0.5

Algorithm 38 (LCS Table)

Input: strings 𝑆1, 𝑆2

Output: table of LCS lengths for all prefixes 𝑆1[1, . . . , 𝑖], 𝑆2[1, . . . , 𝑗]
function LCSTable(𝑆1[1, . . . , 𝑁], 𝑆2[1, . . . ,𝑀])

allocate table[0, . . . , 𝑁][0, . . . ,𝑀]
for 𝑖 = 0 to 𝑁 do ◁ base cases

table[𝑖][0] = 0

for 𝑗 = 0 to 𝑀 do
table[0][𝑗] = 0

for 𝑖 = 1 to 𝑁 do ◁ recursive cases
for 𝑗 = 1 to 𝑀 do

if 𝑆1[𝑖] = 𝑆2[𝑗] then
table[𝑖][𝑗] = 1 + table[𝑖− 1][𝑗 − 1]

else
table[𝑖][𝑗] = max{table[𝑖− 1][𝑗], table[𝑖][𝑗 − 1]}

return table

Now that we have shown how to compute the length of a longest common subsequence, let’s return to the original
problem of computing such a subsequence itself. As in our previous examples, we can backtrack through the table
to recover the characters of an LCS, from back to front. We start with the bottom-right entry (𝑁,𝑀), and backtrack
through a path until we reach some base-case entry. For each (non-base-case) entry (𝑖, 𝑗) on the path, we check to see if
the characters corresponding to that entry match, i.e., if 𝑆1[𝑖] = 𝑆2[𝑗]. If so, we prepend the matching character to our
partial LCS, and we backtrack to entry (𝑖−1, 𝑗−1). If the characters do not match, we look at the entries above and to
the left—namely, (𝑖− 1, 𝑗) and (𝑖, 𝑗− 1)—and backtrack to whichever one is larger (breaking a tie arbitrarily). This is
because the larger of the two entries corresponds to the max value in the recurrence, i.e., it yields a longer completion
of our partial LCS.

The following demonstrates a valid backtracking path for our example strings and LCS table. The solid path uses some
arbitrary choices to break ties, while the dashed path always goes left in case of a tie. Both paths result in a valid LCS
(and in this case, the same set of characters, though that isn’t necessarily the case for all pairs of strings).

W o l v e r i n e s

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1

0 0 1 2 2 2 2 2 2 2 2

0 0 1 2 2 2 2 2 2 2 2

0 0 1 2 2 3 3 3 3 3 3

0 0 1 2 2 3 3 3 3 3 3

G

o

b

l

u

e

!

4.4. Longest Common Subsequence 37

Foundations of Computer Science, Release 0.5

The algorithm for backtracking is as follows:

Algorithm 39 (Longest Common Subsequence, via Backtracking)

Input: strings 𝑆1, 𝑆2

Output: a longest common subsequence of the strings
function LCS(𝑆1[1, . . . , 𝑁], 𝑆2[1, . . . ,𝑀])

table = LCSTable(𝑆1, 𝑆2)
𝑠 = 𝜀 ◁ the empty string
𝑖 = 𝑁, 𝑗 = 𝑀
while 𝑖 > 0 and 𝑗 > 0 do

if 𝑆1[𝑖] = 𝑆2[𝑗] then
𝑠 = 𝑆1[𝑖]‖𝑠
𝑖 = 𝑖− 1, 𝑗 = 𝑗 − 1

else if table[𝑖][𝑗 − 1] > table[𝑖− 1][𝑗] then
𝑗 = 𝑗 − 1

else
𝑖 = 𝑖− 1

return 𝑠

How efficient is this algorithm? Computing a single table entry requires a constant number of operations, because it
simply compares two characters of the strings, looks at one or two neighboring entries, and either adds 1 or takes a
maximum. Since there are (𝑁 + 1) · (𝑀 + 1) entries overall, constructing the table takes 𝑂(𝑁𝑀) time and requires
𝑂(𝑁𝑀) space. Backtracking also does a constant number of operations per entry on the path, and the path takes at
most 𝑁 + 𝑀 steps, so backtracking takes 𝑂(𝑁 + 𝑀) time. Thus, this algorithm uses a total of 𝑂(𝑁𝑀) time and
space.

4.5 All-Pairs Shortest Paths

Suppose you are building a flight-aggregator website. Each day, you receive a list of flights from several airlines with
their associated costs, and some flight segments may actually have negative cost if the airline wants to incentivize a
particular route (see hidden-city ticketing14 for an example of how this can be exploited in practice, and what the perils
of doing so are). You’d like your users to be able to find the cheapest itinerary from point A to point B. To provide
this service efficiently, you determine in advance the cheapest itineraries between all possible origin and destination
locations, so that you need only look up an already computed result when the user puts in a query.

This situation is an example of the all-pairs shortest path problem. The set of cities and flights can be represented as
a graph 𝐺 = (𝑉,𝐸), with the cities represented as vertices and the flight segments as edges in the graph. There is also
a weight function 𝑤𝑒𝑖𝑔ℎ𝑡 : 𝐸 → R that maps each edge to a cost. While an individual edge may have a negative cost,
no negative cycles are allowed. (Otherwise a traveler could just fly around that cycle to make as much money as they
want, which would be very bad for the airlines!) Our task is to find the lowest-cost path between all pairs of vertices in
the graph.

How can we apply dynamic programming to this problem? We need to formulate it such that there are self-similar
subproblems. To gain some insight, we observe that many aggregators allow the selection of layover airports, which
are intermediate stops between the origin and destination, when searching for flights. The following is an example from
kayak.com15.

14 https://en.wikipedia.org/wiki/Airline_booking_ploys#Hidden-city_ticketing
15 https://kayak.com

4.5. All-Pairs Shortest Paths 38

https://en.wikipedia.org/wiki/Airline_booking_ploys#Hidden-city_ticketing
https://kayak.com

Foundations of Computer Science, Release 0.5

COMPARE

COMPARE

COMPARE ALL

Flight leg
1h 10m – 23h 36m

Layover
0h 10m – 18h 51m

Price

Cabin

Austria

Belgium

Mexico

United Kingdom

United States

Layover airports

Flight quality

Aircraft

Major Airline $126

United Airlines $127

Multiple airlines

oneworld $126

SkyTeam $137

Star Alliance $127

Reset

Vienna (VIE)

Brussels (BRU)

Cancún (CUN)

London (LHR)

Atlanta (ATL)

Baltimore (DD8)

Boston (BOS)

Buffalo (BUF)

Charlotte (CLT)

Chicago (ORD)

Cincinnati (CVG)

Cleveland (CLE)

Columbus (CMH)

Denver (DEN)

Detroit (DTW)

Fort Lauderdale (FLL)

Miami (MIA)

Myrtle Beach (MYR)

Norfolk (ORF)

Orlando (MCO)

Orlando (SFB)

Philadelphia (PHL)

Pittsburgh (PIT)

Portland (PWM)

Raleigh (RDU)

Richmond (RIC)

Rochester (ROC)

San Francisco (SFO)

Seattle (SEA)

Tampa (TPA)

Company

About

Careers

Mobile

Blog

How we work

Contact

Help/FAQ

Press

Affiliates

Hotel owners

Partners

More

Airline fees

Airlines

Low fare tips

Badges & Certificates

Site / Currency

 United States

$ United States Dollars

Do Not Sell My Info Privacy Terms & Conditions Ad Choices ©2020 KAYAK

Search cheap flights with KAYAK. Search for the cheapest airline tickets for all the top airlines around the world and the top international flight routes. KAYAK searches hundreds of travel sites to help you find cheap airfare and book a flight that suits you best.
Since KAYAK searches many plane tickets sites at once, you can find cheap tickets from cheap airlines quickly.

from Washington (… New York (N… Trips

WAS to NYC, 10/16 — 10/23 https://www.kayak.com/flights/WAS-NYC/2020-10-16/2020-10...

3 of 4 9/16/20, 1:01 AM

COMPARE

COMPARE

COMPARE ALL

Flight leg
1h 10m – 23h 36m

Layover
0h 10m – 18h 51m

Price

Cabin

Austria

Belgium

Mexico

United Kingdom

United States

Layover airports

Flight quality

Aircraft

Spirit Airlines $118

United Airlines $127

Multiple airlines

oneworld $126

SkyTeam $137

Star Alliance $127

Vienna (VIE)

Brussels (BRU)

Cancún (CUN)

London (LHR)

Atlanta (ATL)

Baltimore (DD8)

Boston (BOS)

Buffalo (BUF)

Charlotte (CLT)

Chicago (ORD)

Cincinnati (CVG)

Cleveland (CLE)

Columbus (CMH)

Denver (DEN)

Detroit (DTW)

Fort Lauderdale (FLL)

Miami (MIA)

Myrtle Beach (MYR)

Norfolk (ORF)

Orlando (MCO)

Orlando (SFB)

Philadelphia (PHL)

Pittsburgh (PIT)

Portland (PWM)

Raleigh (RDU)

Richmond (RIC)

Rochester (ROC)

San Francisco (SFO)

Seattle (SEA)

Tampa (TPA)

Company

About

Careers

Mobile

Blog

How we work

Contact

Help/FAQ

Press

Affiliates

Hotel owners

Partners

More

Airline fees

Airlines

Low fare tips

Badges & Certificates

Site / Currency

 United States

$ United States Dollars

Do Not Sell My Info Privacy Terms & Conditions Ad Choices ©2020 KAYAK

Search cheap flights with KAYAK. Search for the cheapest airline tickets for all the top airlines around the world and the top international flight routes. KAYAK searches hundreds of travel sites to help you find cheap airfare and book a flight that suits you best.
Since KAYAK searches many plane tickets sites at once, you can find cheap tickets from cheap airlines quickly.

from Washington (… New York (N… Trips

WAS to NYC, 10/16 — 10/23 https://www.kayak.com/flights/WAS-NYC/2020-10-16/2020-10...

3 of 4 9/16/20, 1:00 AM

COMPARE

COMPARE

COMPARE ALL

Flight leg
1h 10m – 23h 36m

Layover
0h 10m – 18h 51m

Price

Cabin

Austria

Belgium

Mexico

United Kingdom

United States

Layover airports

Flight quality

Aircraft

Spirit Airlines $118

United Airlines $127

Multiple airlines

oneworld $126

SkyTeam $137

Star Alliance $127

Vienna (VIE)

Brussels (BRU)

Cancún (CUN)

London (LHR)

Atlanta (ATL)

Baltimore (DD8)

Boston (BOS)

Buffalo (BUF)

Charlotte (CLT)

Chicago (ORD)

Cincinnati (CVG)

Cleveland (CLE)

Columbus (CMH)

Denver (DEN)

Detroit (DTW)

Fort Lauderdale (FLL)

Miami (MIA)

Myrtle Beach (MYR)

Norfolk (ORF)

Orlando (MCO)

Orlando (SFB)

Philadelphia (PHL)

Pittsburgh (PIT)

Portland (PWM)

Raleigh (RDU)

Richmond (RIC)

Rochester (ROC)

San Francisco (SFO)

Seattle (SEA)

Tampa (TPA)

Company

About

Careers

Mobile

Blog

How we work

Contact

Help/FAQ

Press

Affiliates

Hotel owners

Partners

More

Airline fees

Airlines

Low fare tips

Badges & Certificates

Site / Currency

 United States

$ United States Dollars

Do Not Sell My Info Privacy Terms & Conditions Ad Choices ©2020 KAYAK

Search cheap flights with KAYAK. Search for the cheapest airline tickets for all the top airlines around the world and the top international flight routes. KAYAK searches hundreds of travel sites to help you find cheap airfare and book a flight that suits you best.
Since KAYAK searches many plane tickets sites at once, you can find cheap tickets from cheap airlines quickly.

from Washington (… New York (N… Trips

WAS to NYC, 10/16 — 10/23 https://www.kayak.com/flights/WAS-NYC/2020-10-16/2020-10...

3 of 4 9/16/20, 1:00 AM

COMPARE

COMPARE

COMPARE ALL

Flight leg
1h 10m – 23h 36m

Layover
0h 10m – 18h 51m

Price

Cabin

Austria

Belgium

Mexico

United Kingdom

United States

Layover airports

Flight quality

Aircraft

Spirit Airlines $118

United Airlines $127

Multiple airlines

oneworld $126

SkyTeam $137

Star Alliance $127

Vienna (VIE)

Brussels (BRU)

Cancún (CUN)

London (LHR)

Atlanta (ATL)

Baltimore (DD8)

Boston (BOS)

Buffalo (BUF)

Charlotte (CLT)

Chicago (ORD)

Cincinnati (CVG)

Cleveland (CLE)

Columbus (CMH)

Denver (DEN)

Detroit (DTW)

Fort Lauderdale (FLL)

Miami (MIA)

Myrtle Beach (MYR)

Norfolk (ORF)

Orlando (MCO)

Orlando (SFB)

Philadelphia (PHL)

Pittsburgh (PIT)

Portland (PWM)

Raleigh (RDU)

Richmond (RIC)

Rochester (ROC)

San Francisco (SFO)

Seattle (SEA)

Tampa (TPA)

Company

About

Careers

Mobile

Blog

How we work

Contact

Help/FAQ

Press

Affiliates

Hotel owners

Partners

More

Airline fees

Airlines

Low fare tips

Badges & Certificates

Site / Currency

 United States

$ United States Dollars

Do Not Sell My Info Privacy Terms & Conditions Ad Choices ©2020 KAYAK

Search cheap flights with KAYAK. Search for the cheapest airline tickets for all the top airlines around the world and the top international flight routes. KAYAK searches hundreds of travel sites to help you find cheap airfare and book a flight that suits you best.
Since KAYAK searches many plane tickets sites at once, you can find cheap tickets from cheap airlines quickly.

from Washington (… New York (N… Trips

WAS to NYC, 10/16 — 10/23 https://www.kayak.com/flights/WAS-NYC/2020-10-16/2020-10...

3 of 4 9/16/20, 1:00 AM

We take the set of allowed layover airports as one of the key characteristics of a subproblem – computing shortest paths
with a smaller set of allowed layover airports is a subproblem of computing shortest paths with a larger set of allowed
layover airports. Then the base case is allowing only direct flights, with no layover airports.

Coming back to the graph representation of this problem, we formalize the notion of a layover airport as an intermediate
vertex of a simple path, which is a path without cycles. Let 𝑝 = {𝑣1, 𝑣2, . . . , 𝑣𝑚} be a path from origin 𝑣1 to destination
𝑣𝑚. Then 𝑣2, . . . , 𝑣𝑚−1 are intermediate vertices.

Assume that the vertices are labeled as numbers in the set {1, 2, . . . , |𝑉 |}. We parameterize a subproblem by 𝑘, which
signifies that the allowed set of intermediate vertices (layover airports) is restricted to {1, 2, . . . , 𝑘}. Then we define
𝑑𝑘(𝑖, 𝑗) to be the length of the shortest path between vertices 𝑖 and 𝑗, where the path is only allowed to go through
intermediate vertices in the set {1, 2, . . . , 𝑘}.

We have already determined that when no intermediate vertices are allowed, which is when 𝑘 = 0, the shortest path
between 𝑖 and 𝑗 is just the direct edge (flight) between them. Thus, our base case is

𝑑0(𝑖, 𝑗) = weight(𝑖, 𝑗)

where weight(𝑖, 𝑗) is the weight of the edge between 𝑖 and 𝑗.

We proceed to the recursive case. We have at our disposal the value of 𝑑𝑘−1(𝑖′, 𝑗′) for all 𝑖′, 𝑗′ ∈ 𝑉 , and we want
to somehow relate 𝑑𝑘(𝑖, 𝑗) to those values. The latter represents adding vertex 𝑘 to our set of permitted intermediate
vertices. There are two possible cases for the shortest path between 𝑖 and 𝑗 that is allowed to use any of the intermediate
vertices 1, 2, . . . , 𝑘:

• Case 1: The path does not go through 𝑘. Then the length of the shortest path that is allowed to go through
1, 2, . . . , 𝑘 is the same as that of the shortest path that is only allowed to go through 1, 2, . . . , 𝑘−1, so 𝑑𝑘(𝑖, 𝑗) =
𝑑𝑘−1(𝑖, 𝑗).

• Case 2: The path does go through 𝑘. Then this path is composed of two segments, one that goes from 𝑖 to 𝑘

4.5. All-Pairs Shortest Paths 39

Foundations of Computer Science, Release 0.5

and another that goes from 𝑘 to 𝑗. We minimize the cost of the total path by minimizing the cost of each of the
segments – the costs respect the principle of optimality.

Neither of the two segments may have 𝑘 as an intermediate vertex – otherwise we would have a cycle. The only
way for a path with a cycle to have lower cost than one without is for the cycle as a whole to have negative weight,
which was explicitly prohibited in our problem statement. Since 𝑘 is not an intermediate vertex in the segment
between 𝑖 and 𝑘, the shortest path between them that is allowed to go through intermediate vertices 1, 2, . . . , 𝑘
is the same as the shortest path that is only permitted to go through 1, 2, . . . , 𝑘− 1. In other words, the length of
this segment is 𝑑𝑘−1(𝑖, 𝑘). By the same reasoning, the length of the segment between 𝑘 and 𝑗 is 𝑑𝑘−1(𝑘, 𝑗).

Thus, we have that in this case, 𝑑𝑘(𝑖, 𝑗) = 𝑑𝑘−1(𝑖, 𝑘) + 𝑑𝑘−1(𝑘, 𝑗).

We don’t know a priori which of these two cases holds, but we can just compute them both and take the minimum. This
gives us the recursive case:

𝑑𝑘(𝑖, 𝑗) = min(𝑑𝑘−1(𝑖, 𝑗), 𝑑𝑘−1(𝑖, 𝑘) + 𝑑𝑘−1(𝑘, 𝑗))

Combining this with the base case, we have our complete recurrence relation:

𝑑𝑘(𝑖, 𝑗) =

{︃
weight(𝑖, 𝑗) if 𝑘 = 0

min(𝑑𝑘−1(𝑖, 𝑗), 𝑑𝑘−1(𝑖, 𝑘) + 𝑑𝑘−1(𝑘, 𝑗)) if 𝑘 ̸= 0

We can now construct a bottom-up algorithm to compute the shortest paths:

Algorithm 40 (Floyd-Warshall)

Input: a weighted directed graph
Output: all-pairs (shortest-path) distances in the graph

function FloydWarshall(𝐺 = (𝑉,𝐸))
for all 𝑢, 𝑣 ∈ 𝑉 do

𝑑0(𝑢, 𝑣) = weight(𝑢, 𝑣)
for 𝑘 = 1 to |𝑉 | do

for all 𝑢, 𝑣 ∈ 𝑉 do
𝑑𝑘(𝑢, 𝑣) = min{𝑑𝑘−1(𝑢, 𝑣), 𝑑𝑘−1(𝑢, 𝑘) + 𝑑𝑘−1(𝑘, 𝑣)}

return 𝑑|𝑉 |

This is known as the Floyd-Warshall algorithm, and it runs in time 𝑂(|𝑉 |3). The space usage is 𝑂(|𝑉 |2) if we only
keep around the computed values of 𝑑𝑚(𝑖, 𝑗) for iterations 𝑚 and 𝑚+1. Once we have computed these shortest paths,
we need only look up the already computed result to find the shortest path between a particular origin and destination.

4.5. All-Pairs Shortest Paths 40

CHAPTER

FIVE

GREEDY ALGORITHMS

A greedy algorithm computes a solution to an optimization problem by making (and committing to) a sequence of
locally optimal choices. In general, there is no guarantee that such a sequence of locally optimal choices produces a
global optimum. However, for some specific problems and greedy algorithms, we can prove that the result is indeed a
global optimum.

As an example, consider the problem of finding a minimum spanning tree (MST) of a weighted, connected, undirected
graph. Given such a graph, we would like to find a subset of the edges so that the subgraph induced by those edges
touches every vertex, is connected, and has minimum total edge cost. This is an important problem in designing
networks, including transportation and communication networks, where we want to ensure that there is a path between
any two vertices while minimizing the overall cost of the network.

Before we proceed, let’s review the definition of a tree. There are three equivalent definitions:

Definition 41 (Tree #1) An undirected graph 𝐺 is a tree if it is connected and acyclic (i.e., has no cycle).

A graph is connected if for any two vertices there is a path between them. A cycle is a nonempty sequence of adjacent
edges that starts and ends at the same vertex.

Definition 42 (Tree #2) An undirected graph 𝐺 is a tree if it is minimally connected, i.e., if it is connected, and
removing any single edge causes it to become disconnected.

Definition 43 (Tree #3) An undirected graph 𝐺 is a tree if it is maximally acyclic, i.e., if it has no cycle, and
adding any single edge causes it to have a cycle.

Exercise 44 Show that the three definitions of a tree are equivalent.

Definition 45 (Minimum spanning tree) A minimum spanning tree (MST) of a connected graph is a subset of
its edges that:

• connects all the vertices,

• is acyclic,

• and has minimum total edge weight over all subsets that meet the first two requirements.

The first two requirements imply that an MST (together with all the graph’s vertices) is indeed a tree, by Definition
41. Since the tree spans all the vertices of the graph, we call it a spanning tree. A minimum spanning tree is then a
spanning tree that has the minimum weight over all spanning trees of the original graph.

The following illustrates three spanning trees of an example graph. The middle one is an MST, since its total weight of
8 is no larger than that of any other spanning tree.

41

Foundations of Computer Science, Release 0.5

4 7

1 5

9

2

A graph may have multiple minimum spanning trees (so we say “an MST,” not “the MST,” unless we have some specific
MST in mind, or have a guarantee that there is a unique MST in the graph). In the following graph, any two edges form
an MST.

4
4

4

Now that we understand what a minimum spanning tree is, let’s consider Kruskal’s algorithm, a greedy algorithm
for computing an MST in a given graph. The algorithm simply examines the edges in sorted order by weight (from
smallest to largest), selecting any edge that does not induce a cycle when added to the set of already-selected edges. It
is “greedy” because it repeatedly selects an edge of minimum weight that does not induce a cycle (a locally optimal
choice), and once it selects an edge, it never “un-selects” it (each choice is committed).

Algorithm 46 (Kruskal)

Input: a weighted, connected, undirected graph
Output: a minimum spanning tree of the graph

function KruskalMST(𝐺 = (𝑉,𝐸))
𝑆 = ∅ ◁ empty set of edges
for all edges 𝑒 ∈ 𝐸, in increasing order by weight do

if 𝑆 ∪ {𝑒} does not have a cycle then
𝑆 = 𝑆 ∪ {𝑒}

return 𝑆

As an example, let’s see how Kruskal’s algorithm computes an MST of the following graph. We start by sorting the
edges by their weights.

42

Foundations of Computer Science, Release 0.5

4

2 7

5

18

6

9 3

15

14

19

8
10

12

9 17

11

1320

21

24

1
2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Then we consider the edges in order, including each edge in our partial result as long as adding it does not introduce a
cycle among our selected edges.

4

2 7

5

18

6

9 3

15

14

19

8
10

12

9 17

11

1320

21

24

1

2

3 4

5

6
7

8
9

10

43

Foundations of Computer Science, Release 0.5

Observe that when the algorithm considers the edge with weight 8, the two incident vertices are already connected by
the already-selected edges, so adding that edge would introduce a cycle. Thus, the algorithm skips it and continues
on to the next edge. In this graph, there are two edges of weight 9, so the algorithm arbitrarily picks one of them to
consider first. The algorithm terminates when all edges have been examined. For this graph, the resulting spanning
tree has a total weight of 66.

As stated previously, for many problems it is not the case that a sequence of locally optimal choices yields a global
optimum. But as we will now show, for the MST problem, it turns out that Kruskal’s algorithm does indeed produce a
minimum spanning tree.

Claim 47 The output of Kruskal’s algorithm is a tree.

To prove this, we will assume for convenience that the input graph 𝐺 is complete, meaning that there is an edge between
every pair of vertices. We can make any graph complete by adding the missing edges with infinite weight, so that the
new edges do not change the minimum spanning trees.

Proof 48 Let 𝑇 be the output of Kruskal’s algorithm, which is the final value of 𝑆, on a complete input graph 𝐺.
Recall from Definition 43 that a tree is a maximally acyclic graph. Clearly 𝑇 is acyclic, since Kruskal’s algorithm
initializes 𝑆 to be the empty set, which is acylic, and it adds an edge to 𝑆 only if it does not induce a cycle.

So, it just remains to show that 𝑇 is maximal. By definition, we need to show that for any potential edge 𝑒 /∈ 𝑇
between two vertices of 𝑇 , adding 𝑒 to 𝑇 would introduce a cycle. The input graph is complete, and the algorithm
examined each of its edges, so it must have considered 𝑒 at some point. Because 𝑇 does not contain 𝑒, and no edge
was ever removed from 𝑆, the algorithm did not add 𝑒 to 𝑆 when it considered 𝑒. Recall that when the algorithm
considers an edge, it leaves it out of 𝑆 only if it would create a cycle in 𝑆 (at that time). So, since it did not add 𝑒
to 𝑆, doing so would have induced a cycle at the time. And since no edges are ever removed from 𝑆, adding 𝑒 to
the final output 𝑇 also would induce a cycle, which is what we set out to show. Thus, 𝑇 is maximal, as desired.□

We can similarly demonstrate that the output of Kruskal’s algorithm is a spanning tree, but we leave that as an exer-
cise.

Exercise 49 Show that if the input graph 𝐺 is connected, then the output of Kruskal’s algorithm spans all the
vertices of 𝐺.

Next, we show that the result of Kruskal’s algorithm is a minimum spanning tree. To do so, we actually prove a stronger
claim:

Claim 50 At any point in Kruskal’s algorithm on an input graph 𝐺, let 𝑆 be the set of edges that have been
selected so far. Then there is some minimum spanning tree of 𝐺 that contains 𝑆.

Since this claim holds at any point in Kruskal’s algorithm, in particular it holds for the final output set of edges 𝑇 , i.e.,
there is an MST that contains 𝑇 . Since we have already seen above that 𝑇 is a spanning tree, no edge of the graph can
be added to 𝑇 without introducing a cycle, so we can conclude that the MST containing 𝑇 as guaranteed by Claim 50
must be 𝑇 itself, and hence 𝑇 is an MST.

Proof 51 We prove Claim 50 by induction over the size of 𝑆, i.e., the sequence of edges added to it by the
algorithm.

• Base case: 𝑆 = ∅ is the empty set. Every MST trivially contains ∅ as a subset, so the claim holds.

• Inductive step: Let 𝑇 be an MST that contains 𝑆. Suppose the algorithm would next add edge 𝑒 to 𝑆. We
need to show that there is some MST 𝑇 ′ that contains 𝑆 ∪ {𝑒}.

There are two possibilities: either 𝑒 ∈ 𝑇 , or not.

– Case 1: 𝑒 ∈ 𝑇 . The claim follows immediately: since 𝑇 is an MST that contains 𝑆, and also 𝑒 ∈ 𝑇 ,
then 𝑇 is an MST that contains 𝑆 ∪ {𝑒}. (In other words, we can take 𝑇 ′ = 𝑇 in this case.)

– Case 2: 𝑒 /∈ 𝑇 . Then by Definition 43, 𝑇 ∪ {𝑒} contains some cycle 𝐶, and 𝑒 ∈ 𝐶 because 𝑇 alone

44

Foundations of Computer Science, Release 0.5

is acyclic.

By the code of Kruskal’s algorithm, we know that 𝑆 ∪ {𝑒} does not contain a cycle. Thus, there must
be some edge 𝑓 ∈ 𝐶 for which 𝑓 /∈ 𝑆 ∪ {𝑒}, and in particular, 𝑓 ̸= 𝑒. Since 𝑓 ∈ 𝐶 ⊆ 𝑇 ∪ {𝑒}, we
have that 𝑓 ∈ 𝑇 .

Observe that 𝑆 ∪ {𝑓} ⊆ 𝑇 , since 𝑆 ⊆ 𝑇 by the inductive hypothesis. Since 𝑇 does not contain a
cycle, neither does 𝑆 ∪ {𝑓}.

Since adding 𝑓 to 𝑆 would not induce a cycle, the algorithm must not have considered 𝑓 yet (at the time
it considers 𝑒 and adds it to 𝑆), or else it would have added 𝑓 to 𝑆. Because the algorithm considers
edges in sorted order by weight, and it has considered 𝑒 but has not considered 𝑓 yet, it must be that
𝑤(𝑒) ≤ 𝑤(𝑓).

Now define 𝑇 ′ = 𝑇 ∪{𝑒}∖{𝑓}, which has weight 𝑤(𝑇 ′) = 𝑤(𝑇)+𝑤(𝑒)−𝑤(𝑓) ≤ 𝑤(𝑇). Moreover,
𝑇 ′ is a spanning tree of 𝐺: for any two vertices, there is a path between them that follows such a path
in 𝑇 , but instead of using edge 𝑓 it instead goes the “other way around” the cycle 𝐶 using the edges
of 𝐶 ∖ {𝑓} ⊆ 𝑇 ′.

Since 𝑇 ′ is a spanning tree whose weight is no larger than that of 𝑇 , and 𝑇 is an MST, 𝑇 ′ is also an
MST.16 And since 𝑆 ⊆ 𝑇 and 𝑓 /∈ 𝑆, we have that 𝑆 ∪ {𝑒} ⊆ 𝑇 ∪ {𝑒} ∖ {𝑓} = 𝑇 ′. Thus, 𝑇 ′ is an
MST that contains 𝑆 ∪ {𝑒}, as needed.

16 This actually shows that 𝑤(𝑇 ′) = 𝑤(𝑇) and hence 𝑤(𝑒) = 𝑤(𝑓), but these facts are not needed for this proof.

We have proved that Kruskal’s algorithm does indeed output an MST of its input graph. We also state without proof
that its running time on an input graph 𝐺 = (𝐸, 𝑉) is 𝑂(|𝐸| log|𝐸|), by using an appropriate choice of supporting
data structure to detect for cycles.

Observe that the analysis of Kruskal’s algorithm is nontrivial. This is often the case for greedy algorithms. Again, it is
usually not the case that locally optimal choices lead to a global optimum, so we typically need to do significant work
to demonstrate that this is actually the case for a particular problem and algorithm.

A standard strategy for proving that a greedy algorithm correctly solves a particular optimization problem proceeds by
establishing a “greedy choice” property, often by means of an exchange-style argument like the one we gave above for
MSTs. A “greedy choice” property consists of two parts:

• Base case: the algorithm’s initial state is contained in some optimal solution. Since a typical greedy algorithm’s
initial state is the empty set, this property is usually easy to show.

• Inductive step: for any (greedy) choice the algorithm makes, there remains an optimal solution that contains the
algorithm’s set of choices so far. (Observe that Claim 50 has this form.)

With a greedy-choice property established, by induction, the algorithm’s set of choices is at all times contained in some
optimal solution. So, it just remains to show that the final output consists of a full solution (not just a partial one); it
therefore must be an optimal solution.

To show the inductive step of the greedy-choice property, we have the inductive hypothesis that the previous choices 𝑆
are contained in some optimal solution OPT, and we need to show that the updated choices𝑆∪{𝑠} are contained in some
optimal solution OPT′. If 𝑠 ∈ OPT, then the claim holds trivially. But if 𝑠 /∈ OPT, then we aim to invoke some exchange
argument, which modifies OPT to some other optimal solution OPT′ that contains 𝑆∪{𝑠}. Indeed, this is exactly what
we did in the correctness proof for Kruskal’s argument, by changing OPT = 𝑇 to OPT′ = 𝑇 ′ = 𝑇 ∪ {𝑒} ∖ {𝑓},
for some carefully identified edge 𝑓 ∈ 𝑇 whose weight is no smaller than that of 𝑒. This means that OPT′ is also an
optimal solution, as needed.

45

Part II

Computability

46

CHAPTER

SIX

INTRODUCTION TO COMPUTABILITY

We now turn our attention to fundamental questions about computation. While we have seen several algorithmic
approaches to solving problems, when faced with a new problem, the first question we should consider is whether it is
solvable at all. Otherwise, we might waste a lot of time on a fruitless effort to find an algorithm where none exists!

Before we can reason about what problems are solvable on a computer, we first need to define, in a general and abstract
way, what a problem is, and what a computer (or algorithm) is. Rather than basing our answers on specific hardware
and software technologies, programming languages, and implementation details (which go in and out of fashion over
time), we want to develop simple, fundamental abstractions that are capable of modeling all kinds of computations.
These abstractions will be easier to reason about than real computers and programs. Moreover, our abstractions will
ideally be strong enough to capture all possible implementations of “computation”, so that results in our model will
hold for all real computers, now and into the future.

6.1 Formal Languages

We start by defining a unifying abstraction to represent computational problems. The simplest kind of output a problem
can have is a yes-or-no answer, like in this question:

• Is there a flight from Detroit to New York for less than $100?

We can generalize the question above into a predicate that takes an input value:

• Is there a flight from Detroit to 𝑥 for less than $100?

For any particular destination 𝑥, the answer to this question is still either yes or no. We can further generalize this
predicate to work with multiple input values:

• Is there a flight from 𝑥 to 𝑦 for less than 𝑧?

While this predicate is expressed as taking three inputs 𝑥, 𝑦, and 𝑧, we can equivalently consider it to be a predicate
that takes a single input tuple 𝑤 = (𝑥, 𝑦, 𝑧) of those three components. Thus, we lose no generality in restricting to
predicates that have a single input.

Another name for a predicate (which we will use more often) is a decision problem: given an input, the answer is simply
a yes-or-no decision.

A predicate is applicable to some universe of inputs, such as all airports or cities, for instance. (In programming
languages, a type is used to represent a universe of values.) The predicate is true (has a “yes” answer) for some subset
of the inputs, and is false (a “no” answer) for all the other inputs. We call the set of “yes” instances the language of the
predicate. The following is the language defined by our second predicate above:

𝐿getaways = {𝑥 : there is a flight from Detroit to 𝑥 for less than $100} .

Therefore, we have recast the question “is there a flight from Detroit to 𝑥 for less than $100?” as the decision problem
“is 𝑥 ∈ 𝐿getaways?” Any predicate can be recast in such a way, as the decision problem of determining whether the input
is in the corresponding language, and vice-versa.

47

Foundations of Computer Science, Release 0.5

The complement language is the subset of inputs that are not in the language, i.e., those for which the answer is “no”.
We represent the complement using an overbar:

𝐿getaways = {𝑥 : there is no flight from Detroit to 𝑥 for less than $100} .

So far, we have unified computational problems under the abstraction of languages and their decision problems, of
determining whether the input is in the language. Now we also unify the notion of “input” under a common abstraction:
as a string over an alphabet.

To represent inputs, we first fix an alphabet, which we often denote by the Greek letter capital-Sigma, written Σ.
(Warning: this is the same Greek letter used to denote summation, but in this context it has a completely different
meaning.17)

Definition 52 (Alphabet) An alphabet is some nonempty, finite set of symbols.

As a few examples:

• Σbinary = {0, 1} is the alphabet consisting of just the symbols 0 and 1.

• Σlowercase = {𝑎, 𝑏, . . . , 𝑧} is the alphabet consisting of lowercase English letters.

• ΣASCII can be defined as the alphabet consisting of all the symbols in the ASCII character set.

• ΣGreek = {𝛼, 𝛽, 𝛾, . . . , 𝜔} is the alphabet consisting of the lower-case Greek letters.

• ΣBigTen can be defined as the alphabet consisting of all the schools in the Big Ten conference: Michigan, Indiana,
Wisconsin, Ohio State, etc. (To depict them visually, we might use their logos.)

We emphasize that an alphabet can be any nonempty set of elements of any kind, as long as it is finite. So, for example,
the set of natural numbers N = {0, 1, 2, . . .} is not a valid alphabet.

The binary alphabet Σ = {0, 1} is often taken as the “default” choice, both because it is the “simplest” nontrivial
alphabet, and modern computers operate on 0s and 1s at the lowest level. But fundamentally, we can use whatever
alphabet we find convenient for our specific purpose.

Definition 53 (String) A string over an alphabet Σ is a finite, ordered sequence of symbols from Σ.

We stress that a string must have finite length. (Below we sometimes preface the term “string” by “(finite-length)” for
emphasis, but this is redundant and does not change the meaning.)

For example, a binary string consists of any finite sequence of 0s and 1s (the symbols of Σbinary = {0, 1}), while every
(lower-case) English word is a sequence of letters from the alphabet Σlowercase = {𝑎, 𝑏, . . . , 𝑧}. (Not every string over
this alphabet is a real English word, however.)

The concept of a string appears in most programming languages, which usually specify a “string” data type for se-
quences of elements over a certain character set (e.g., ASCII or UTF); the character set is the string’s alphabet. Pro-
gramming languages often specify notation for string literals, such as enclosing a sequence of characters within match-
ing double quotes. This notation itself is not part of the string data; for instance, the string literal "abcd" in C++ and
Python represents the four-character18 sequence 𝑎𝑏𝑐𝑑, and the quotation marks are not part of this sequence.

Note that the empty sequence of symbols is a valid string, over any alphabet. For instance, "" represents an empty string
in C++ and Python. In computability, the standard notation for the empty string is the symbol 𝜀 (called a varepsilon in
some formatting systems like LaTeX).

We typically display a nonempty string simply by writing out its symbols in order. For instance, 1011 is a string over
the alphabet Σbinary, consisting of the symbol 1, followed by the symbol 0, etc. The length of a string 𝑤 is the number
of symbols in 𝑤, and is denoted |𝑤|; for example, |1011| = 4.

17 In LaTeX, the symbol is obtained using the command \Sigma, and it is also typeset differently than a summation (which is obtained using the
command \sum).

18 In C++, the character-array string representation also includes a null terminator to indicate the end of the string, but that is an implementation
detail. Other implementations do not use this representation.

6.1. Formal Languages 48

Foundations of Computer Science, Release 0.5

To indicate the set of all strings of a certain length over an alphabet, we use “product” and “power” notation for sets.
Recall that the set product 𝐴 × 𝐵 is the set of all pairs where the first component is an element of 𝐴 and the second
component is an element of 𝐵. So, for Σ = {0, 1}, its product with itself is Σ × Σ = {00, 01, 10, 11}, and similarly
for products of more copies of Σ. For a set 𝐴 and a non-negative integer 𝑘, the notation 𝐴𝑘 means the set product of 𝑘
copies of 𝐴. For example:

{0, 1}0 = {𝜀} (because 𝜀 is the only length-0 string)
{0, 1}1 = {0, 1}
{0, 1}2 = {0, 1} × {0, 1} = {00, 01, 10, 11}
{0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111}

In general, then, Σ𝑘 is the set of length-𝑘 strings over Σ.

The notation Σ* denotes the set of all (finite-length) strings over the alphabet Σ. Here, the “star” superscript * is known
as the Kleene star operator, whose formal definition is

Σ* =
⋃︁
𝑘≥0

Σ𝑘 = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · · .

The above definition says that Σ* is made up of all strings of length 0 over Σ, all strings of length 1 over Σ, all strings
of length 2, and so on, over all finite lengths 𝑘. For example,

Σ*
binary = {0, 1}*

= {𝜀, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . .}

is the set of all (finite-length) binary strings. It is very important to understand that while Σ* is an infinite set (for any
alphabet Σ)—i.e., it has infinitely many elements (strings)—each individual string in Σ* has some finite length. This
is analogous to the natural numbers: there are infinitely many of them, but each one has some finite value (there is no
natural number “infinity”).

Definition 54 (Language) A language 𝐿 over an alphabet Σ is a subset of Σ*, i.e., 𝐿 ⊆ Σ*. In other words, it is
a set of (finite-length) strings over Σ.

{𝑥 ∶ 𝑥 ∈ 𝐿}

{𝑥 ∶ 𝑥 ∉ 𝐿}

Σ∗
𝑳

𝑳"

The following are examples of languages:

• 𝐿1 = {11𝑦 : 𝑦 ∈ {0, 1}*} is the language over Σbinary consisting of all binary strings that begin with two ones.

• 𝐿2 = {ℎ𝑒𝑙𝑙𝑜, 𝑤𝑜𝑟𝑙𝑑} is the language over Σlowercase consisting of just the two strings ℎ𝑒𝑙𝑙𝑜 and 𝑤𝑜𝑟𝑙𝑑.

6.1. Formal Languages 49

Foundations of Computer Science, Release 0.5

• The empty language (empty set) ∅ is a language over any alphabet Σ, which consists of no strings.

It is important to understand that the empty language ∅ is different from the empty string 𝜀: the former is a set
that has no elements, while the latter is an individual string (ordered sequence) that has no characters. (The
difference is akin to that between the values produced by set() and str() with no arguments in Python, or
std::set<std::string>{} and std::string{} in C++.) Moreover, the language {𝜀} is different still: it is
the set that consists of just one string, and that element is the empty string.

As illustrated above, some languages are finite, while others have infinitely many strings.

According to the definition, we can view the words of the English language itself as comprising a formal language over
the English alphabet: it a set of strings made up of English characters. (However, note that this view does not capture
any of the grammar or meaning of the English language, just its set of words.)

In computing, we often use the binary alphabet {0, 1}. Any data value can be represented as a binary string—in fact,
real computers store all data in binary, from simple text files to images, audio files, and this very document itself. Thus,
the languages we work with generally consist of binary strings. When we express a language such as

𝐿getaways = {𝑥 : there is a flight from Detroit to 𝑥 for less than $100},

what we actually mean can be more formally written as:

𝐿getaways = {𝑦 : 𝑦 is the binary representation of an airport 𝑥 for which
there is a flight from Detroit to 𝑥 for less than $100} .

We often use angle-brackets notation ⟨𝑥⟩ to represent the binary encoding of the value 𝑥. We can then express the
above more concisely as:

𝐿getaways = {⟨𝑥⟩ : there is a flight from Detroit to 𝑥 for less than $100} .

However, for notational simplicity we often elide the angle brackets, making the binary encoding of the input implicit.

Now that we have a formal concept of a language (i.e., the “yes” instances of a decision problem), solving a decision
problem entails determining whether a particular input is a member of that language. An algorithm 𝑀 that solves a
problem 𝐿 is one that:

1. takes some arbitrary input 𝑥,

2. performs some computations,

3. outputs “yes” — in other words, accepts — if 𝑥 ∈ 𝐿;

4. outputs “no” — in other words, rejects — if 𝑥 /∈ 𝐿.

If this is the case, we say that 𝑀 decides 𝐿.

Can every language 𝐿 be decided? In other words, is it the case that for any language 𝐿, there exists some algorithm
𝑀 that decides 𝐿? To answer this question, we need a formal definition of what an algorithm really is.

6.2 Overview of Automata

In computability theory, an abstract computing device is known as an automaton (plural: automata). There are numer-
ous different abstract models of computation, such as state machines, recursive functions, lambda calculus, von Neu-
mann machines, cellular automata, and so on. We will primarily concern ourselves with the Turing-machine model,
though we will first briefly examine a more restricted variant called (deterministic) finite automata.

Both the finite-automata and Turing-machine models are forms of state machines. A machine includes a finite set of
states, each representing a discrete status of a computation, and the state transitions the machine follows as it computes.
An analogous concept in a C++ or Python program is a line of code (or program counter in a compiled executable): a

6.2. Overview of Automata 50

Foundations of Computer Science, Release 0.5

program has a finite number of lines, execution of the program is at a single line at any point in time, and the program
transitions from one line to another as it runs (possibly revisiting lines over time, as in a loop).

In a state machine, state transitions are based on what is read from the input, what is in the machine’s memory (if it has
a separate memory), or both. We represent states and transitions graphically as follows:

q1

q2

q3

0

1

q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

q0 q1 q2

a

b a, b

a, b

2

States are drawn as vertices in the graph, often labeled by names. A directed edge represents a transition, and the
label denotes the conditions under which the transition is taken, as well as any side effects (e.g., writing a symbol to
memory) of the transition. Mathematically, we represent the states as a finite set, and state transitions as a transition
function, with states and other conditions as components of the domain, and states and side effects as components of
the codomain.

The primary difference between the two models we’ll discuss (finite automata and Turing machines) is what kind of
“memory” the model has access to. This has a significant effect on the computational power of a machine. More
generally, the Chomsky hierarchy is a collection of various classes of languages, where each class corresponds to what
can be computed on a particular kind of state machine:

• Regular languages correspond to the computational power of finite automata (FA in the diagram below), which
have no memory beyond their own states.

• Context-free languages correspond to pushdown automata (PDA in the diagram below), which have a single
“stack” as memory, and can interact only with the top of the stack (pushing to and popping from it).

• Context-sensitive languages are computable by linear-bounded automata (LBA in the diagram below), which
have access to memory that is linear in size with respect to the input, and which can be accessed in any position.

• Recursively-enumerable languages, also called recognizable languages, correspond to the power of Turing ma-
chines (TM in the diagram below), which have access to unbounded memory that can be accessed in any position.

Each of these classes of languages is strictly contained within the next, demonstrating the effect that the memory system
has on computational power.

6.2. Overview of Automata 51

Foundations of Computer Science, Release 0.5

Regular
(FA)

Context-free
(PDA)

Context-sensitive
(LBA)

Recursively-
enumerable/
Recognizable

(TM)

All languages
𝒫(Σ∗)

We next examine the finite-automata model in more detail, before turning our attention to Turing machines.

6.2. Overview of Automata 52

CHAPTER

SEVEN

FINITE AUTOMATA

The simplest state-machine model is that of a finite automaton, which consists of a finite number of states and no
additional memory. The machine is in exactly one state at a time, and a computational step involves reading a symbol
from the input string and transitioning to the next state (which may be the same state as before) based on what symbol is
read. This model and slight variations of it are known by many different names, including finite automata, deterministic
finite automata (DFA), finite-state automata, finite-state machine, finite acceptor, and others. We will use the term finite
automata to refer to the model.

The following is a graphical representation of a finite automaton over the input alphabet Σ = {𝑎, 𝑏}:

q1

q2

q3

0

1

q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

q0 q1 q2

a

b a, b

a, b

2

This automaton has six states: 𝑞0, 𝑞𝑎, 𝑞𝑎𝑏, 𝑞𝑎𝑏𝑏, 𝑞𝑎𝑏𝑏𝑎, 𝑞other. The state 𝑞0 is the special initial state, which is the state in
which computation begins. Graphically, this is denoted by an incoming edge with no label and no originating vertex.
This particular automaton also has a single accept state, 𝑞𝑎𝑏𝑏𝑎, depicted with a double circle. If the computation
terminates in this state, the machine accepts the input, otherwise the machine rejects it. Finally, transitions between
states are depicted as directed edges, with labels corresponding to the input symbol(s) that trigger the transition.

A finite automaton runs on an input string, performing a state transition for each symbol of the string, in sequence. The
machine does a single pass over the input, and the computation terminates when (and only when) the entire input has
been read. The result is acceptance if the final state is an accept state, and rejection otherwise.

As an example, we trace the execution of the above finite automaton on the input string 𝑎𝑏𝑏𝑎. In the diagrams below,
the top-left shows how much of the input has been read, and the current state is represented by a shaded vertex. Initially,
the machine is in the start state 𝑞0, and none of the input string has been read yet:

53

Foundations of Computer Science, Release 0.5

a b b a

q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

3

The first input symbol is an 𝑎, so the machine makes the transition labeled by an 𝑎 from the state 𝑞0, which goes to the
state 𝑞𝑎.

a b b a

q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

4

The second step reads the symbol 𝑏 from the input, so the machine transitions from 𝑞𝑎 to 𝑞𝑎𝑏.

a b b a

q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

5

The third step reads the symbol 𝑏, and the corresponding transition is from the state 𝑞𝑎𝑏 to 𝑞𝑎𝑏𝑏.

54

Foundations of Computer Science, Release 0.5

a b b a

q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

6

The fourth step reads an 𝑎, causing a transition from 𝑞𝑎𝑏𝑏 to 𝑞𝑎𝑏𝑏𝑎.

a b b a

q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

7

The entire input has now been read, so the computation is complete. The machine terminates in the state 𝑞𝑎𝑏𝑏𝑎; since
this is an accepting state, the machine has accepted the input 𝑎𝑏𝑏𝑎.

The following is an example of running the machine on input 𝑎𝑏𝑎:

a b a

q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

8

As before, the first symbol is an 𝑎, so the machine transitions from the start state 𝑞0 to the state 𝑞𝑎.

55

Foundations of Computer Science, Release 0.5

a b a

q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

9

The second symbol is again a 𝑏, so the machine goes from state 𝑞𝑎 to 𝑞𝑎𝑏.

a b a

q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

10

The third step reads the symbol 𝑎, so the machine transitions from 𝑞𝑎𝑏 to 𝑞other.

a b a

q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

11

The machine has processed the entire input, so the computation is complete and the machine terminates. Since the final
state 𝑞other is not an accepting state, the machine has rejected the input 𝑎𝑏𝑎.

For this automaton, the only string of input symbols that leads to termination in an accepting state is 𝑎𝑏𝑏𝑎, so this finite

56

Foundations of Computer Science, Release 0.5

automaton decides the language

𝐿 = {𝑎𝑏𝑏𝑎}

consisting of only the string 𝑎𝑏𝑏𝑎. Note that an input like 𝑎𝑏𝑏𝑎𝑏 causes the automaton to pass through the accepting
state 𝑞𝑎𝑏𝑏𝑎 during the computation, but it ultimately terminates in the non-accept state 𝑞other, so the machine rejects the
input 𝑎𝑏𝑏𝑎𝑏.

7.1 Formal Definition

Definition 55 (Finite automaton) A finite automaton is a five-tuple

𝑀 = (Σ, 𝑄, 𝑞0, 𝐹, 𝛿) ,

where:

• Σ is the (finite) input alphabet; an input to the automaton is any (finite) string over this alphabet (i.e., an
element of Σ*).

• 𝑄 is the finite set of the automaton’s states.

• 𝑞0 ∈ 𝑄 is the initial state.

• 𝐹 ⊆ 𝑄 is the subset of accepting states. If, after reading the entire input string, the machine terminates in
one of these states, it is said to accept the string; otherwise, it is said to reject the string.

• 𝛿 is the transition function, which maps a state and input symbol to a next state:

𝛿 : 𝑄× Σ → 𝑄 .

(Recall that 𝑄×Σ is the set of all pairs whose first component is a state in 𝑄 and whose second component
is a symbol in Σ.) This function defines the automaton’s transitions as follows: if it is in state 𝑞 ∈ 𝑄 and
reads the next input symbol 𝜎 ∈ Σ, then it transitions to the next state 𝛿(𝑞, 𝜎) ∈ 𝑄.

We emphasize that 𝛿 must be a function, i.e., for every state-symbol pair, there must be exactly one next
state.

We often depict the states visually as vertices of a graph, and we depict the state transitions as directed edges from
states to new states, labeled by the corresponding symbols. Specifically, if 𝛿(𝑞, 𝜎) = 𝑞′, then we have an edge from 𝑞
to 𝑞′, labeled by 𝜎. (If there are multiple transitions from 𝑞 to 𝑞′ for different symbols, we usually use the same edge
for all of them, and label it by a comma-separated list of all the corresponding symbols.) Because 𝛿 is a function, this
means that for each state, there must be exactly one outgoing edge for each alphabet symbol.

Let us now see the formal definition of the example automaton given above.

• The input alphabet is Σ = {𝑎, 𝑏}.

• The set of states is

𝑄 = {𝑞0, 𝑞𝑎, 𝑞𝑎𝑏, 𝑞𝑎𝑏𝑏, 𝑞𝑎𝑏𝑏𝑎, 𝑞other} .

• The initial state is the one we named 𝑞0.

• The subset 𝐹 of accepting states consists of the single state 𝑞𝑎𝑏𝑏𝑎, i.e., 𝐹 = {𝑞𝑎𝑏𝑏𝑎}.

7.1. Formal Definition 57

Foundations of Computer Science, Release 0.5

• The transition function can be specified in list form, as:

𝛿(𝑞0, 𝑎) = 𝑞𝑎

𝛿(𝑞0, 𝑏) = 𝑞other

𝛿(𝑞𝑎, 𝑎) = 𝑞other

𝛿(𝑞𝑎, 𝑏) = 𝑞𝑎𝑏

𝛿(𝑞𝑎𝑏, 𝑎) = 𝑞other

𝛿(𝑞𝑎𝑏, 𝑏) = 𝑞𝑎𝑏𝑏

𝛿(𝑞𝑎𝑏𝑏, 𝑎) = 𝑞𝑎𝑏𝑏𝑎

𝛿(𝑞𝑎𝑏𝑏, 𝑏) = 𝑞other

𝛿(𝑞𝑎𝑏𝑏𝑎, 𝑎) = 𝑞other

𝛿(𝑞𝑎𝑏𝑏𝑎, 𝑏) = 𝑞other

𝛿(𝑞other, 𝑎) = 𝑞other

𝛿(𝑞other, 𝑏) = 𝑞other .

Alternatively, it can be given in tabular form:

old state 𝑞 𝛿(𝑞, 𝑎) 𝛿(𝑞, 𝑏)

𝑞0 𝑞𝑎 𝑞other
𝑞𝑎 𝑞other 𝑞𝑎𝑏
𝑞𝑎𝑏 𝑞other 𝑞𝑎𝑏𝑏
𝑞𝑎𝑏𝑏 𝑞𝑎𝑏𝑏𝑎 𝑞other
𝑞𝑎𝑏𝑏𝑎 𝑞other 𝑞other
𝑞other 𝑞other 𝑞other

In either case, notice that for each state-symbol pair, there is exactly one corresponding next state.

Definition 56 (Language of a finite automaton) The language of a finite automaton 𝑀 is the set of strings that
the automaton accepts: 𝐿(𝑀) = {𝑥 ∈ Σ* : 𝑀 accepts 𝑥}. We also say that 𝑀 decides this language: it accepts
every string in 𝐿(𝑀) and rejects every string not in 𝐿(𝑀).

For the example automaton 𝑀 above, we have

𝐿(𝑀) = {𝑎𝑏𝑏𝑎} .

Example 57 Consider the finite automaton 𝑀 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹) where:

𝑄 = {𝑞0, 𝑞1, 𝑞2}
Σ = {𝑎, 𝑏}

𝛿(𝑞0, 𝑎) = 𝑞0

𝛿(𝑞0, 𝑏) = 𝑞1

𝛿(𝑞1, 𝑎) = 𝑞2

𝛿(𝑞1, 𝑏) = 𝑞2

𝛿(𝑞2, 𝑎) = 𝑞2

𝛿(𝑞2, 𝑏) = 𝑞2

𝐹 = {𝑞1}

This machine has three states, of which 𝑞1 is the lone accept state. The following is a graphical representation:

7.1. Formal Definition 58

Foundations of Computer Science, Release 0.5
q0 qa qab qabb qabba

qother

b

a

a

b

a

b

b

a

a, b

a, b

q0 q1 q2

a

b a, b

a, b

2

The machine starts in state 𝑞0 and stays there as long as it reads just 𝑎 symbols. If it then reads a 𝑏, the machine
transitions to 𝑞1. Any subsequent symbol moves the machine to 𝑞2, where it stays until it reads the rest of the
input. Since 𝑞1 is the only accepting state, the machine accepts only strings that end with a single 𝑏. Thus, the
language of the machine is

𝐿(𝑀) = {𝑏, 𝑎𝑏, 𝑎𝑎𝑏, 𝑎𝑎𝑎𝑏, . . .} ,

i.e., the set of strings that start with any number of 𝑎s, followed by a single 𝑏.

Finite automata have many applications, including software for designing and checking digital circuits, lexical analyzers
of most compilers (usually the first phase of compilation, which splits a source file into individual words, or “tokens”),
scanning large bodies of text (pattern matching), and reasoning about many kinds of systems that have a finite number
of states (e.g., financial transactions, network protocols, and so on).

However, finite automata are not strong enough to model all possible computations. For instance, no finite automaton
decides the language

𝐿 = {0𝑛1𝑛 : 𝑛 ∈ N} = {𝜀, 01, 0011, 000111, . . .}

consisting of strings composed of an arbitrary number of 0s followed by the same number of 1s. The basic intuition for
why this is the case is that, since a finite automaton does not have any memory beyond its own states, it cannot reliably
count how many 0s or 1s it has seen (beyond a certain fixed number), so it will output the incorrect answer on some
input strings. See below for a rigorous proof that formalizes this intuition.

Yet we can easily write a program in most any programming language that decides 𝐿. The following is an example in
C++. (To be precise, this program does not quite work, because if the input starts with enough 0s, the count variable,
which has type int, will overflow and lose track of the number of 0s that have been read. This is exactly the issue with
trying to use a finite automaton to decide 𝐿; to overcome it, we would need to use a data type that can store arbitrarily
large integers.)

#include <iostream>

int main() {
int count = 0;
char ch;
while ((std::cin >> ch) && ch == '0') {
++count;

}
if (!std::cin || ch != '1') {
return !std::cin && count == 0;

}
--count; // already read one 1
while ((std::cin >> ch) && ch == '1') {
--count;

}
return !std::cin && count == 0;

}

7.1. Formal Definition 59

Foundations of Computer Science, Release 0.5

Thus, we need a more powerful model of computation to characterize the capabilities of real-world programs.

Proof that no DFA decides 𝐿 = {0𝑛1𝑛 : 𝑛 ∈ N}

We prove that no DFA decides the language 𝐿 = {0𝑛1𝑛 : 𝑛 ∈ N}. Let 𝑀 be an arbitrary DFA 𝑀 ; we will show
that 𝑀 does not decide 𝐿 by exhibiting an input on which 𝑀 returns the wrong output, i.e., 𝑀 rejects a string in 𝐿,
or accepts a string not in 𝐿.

Let 𝑠 be the number of states of 𝑀 , which is finite by definition of a DFA. Consider the execution of 𝑀 on an input
that begins with 0𝑠+1. Since 𝑀 has only 𝑠 states, by the pigeonhole principle, there must be some state 𝑞 ∈ 𝑄 that
is repeated while 𝑀 processes the string. Specifically, there exist some distinct 0 ≤ 𝑖 < 𝑗 ≤ 𝑠+ 1 such that 𝑀 is
in state 𝑞 after having read 0𝑖, and also after having read 0𝑗 .

Now, consider running 𝑀 on the strings 0𝑖1𝑖 ∈ 𝐿 and 0𝑗1𝑖 /∈ 𝐿 (where the latter holds because 𝑖 ̸= 𝑗). Notice that
𝑀 must output the same decision on both of these strings, because it is in the same state 𝑞 after reading the initial 𝑖
or 𝑗 zeros, and because both strings have 1𝑖 after those zeros. However, one of these strings is in 𝐿 and the other is
not, so 𝑀 outputs the wrong decision on one of them, and therefore does not decide 𝐿, i.e. 𝐿(𝑀) ̸= 𝐿, as claimed.

The reasoning above is an particular example of applying the pumping lemma19. If a language is regular (i.e., can
be decided by a DFA), then every sufficiently long string in the language has some section 𝑤 that can be repeated
arbitrarily, or “pumped”, to produce another string that is also a member of the language. The pumping lemma can
be used to prove that a language is non-regular, as we did above for 𝐿 = {0𝑛1𝑛 : 𝑛 ∈ N}.

19 https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages

7.1. Formal Definition 60

https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages

CHAPTER

EIGHT

TURING MACHINES

A Turing machine is a powerful abstract model for a computer, proposed by Alan Turing in 1936. The abstraction was
designed to model pencil-and-paper computations by a human or other (possibly mechanical) “brain” that is following
some prescribed set of rules. The essential features of the model are as follows:

• Each sheet of paper can hold a finite number of symbols from some finite alphabet.

• The amount of paper is unlimited – if we run out of space, we can just buy more paper.

• The “brain” can look at and modify only one symbol on the paper at a time.

• Though there may be an arbitrary amount of data stored on the paper, the “brain” can retain only a fixed amount
at any time.

We model these features more specifically as follows, though we emphasize that many of these choices are fairly
arbitrary, and can be adjusted without affecting the power of the model. (See Equivalent Models (page 89) for an
example.)

• The paper is represented by an infinite tape that is divided into individual cells, each of which holds one symbol at
a time (we view “blank” as a symbol of its own). For concreteness, in this text we use a “uni-directionally infinite”
tape that has a leftmost cell and continues indefinitely to the right. (One can also consider a “bi-directionally
infinite” tape without affecting the strength of the model.)

• The tape has a read/write head that is positioned over a single cell at a time, and it can read the contents of the
cell, write a new symbol to that cell, and move one position to the left or right.

• Finally, the brain is modeled using a kind of finite-state machine: there are a finite set of states, with each state
corresponding to what the brain “holds” at a specific time. Except for the states that terminate the machine, each
state uses the symbol read by the head to determine what symbol to write (at the same cell), which direction to
move the head, and what the next state will be.

The following is a pictorial representation of this model.

0 1 1 1 0 0 1 1 1 ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

FINITE STATE
CONTROL

We formalize the notion of a Turing machine as follows.

61

Foundations of Computer Science, Release 0.5

Definition 58 (Turing machine) A Turing machine is a seven-tuple

𝑀 = (Σ,Γ, 𝑄, 𝑞start, 𝑞acc, 𝑞rej, 𝛿)

whose components are as follows:

• Σ is the (finite) input alphabet. An input to the machine is any (finite) string over this alphabet
(i.e., an element of Σ*).

• Γ is the (finite) tape alphabet, which must contain Σ as a subset (i.e., Σ ⊆ Γ), in addition to a
special blank symbol ⊥ ∈ Γ that is not in the input alphabet (i.e., ⊥ /∈ Σ). It may contain other
elements as well. At all times, every symbol on the tape is an element of Γ.

• 𝑄 is the finite set of states.

• 𝑞start ∈ 𝑄 is the initial state.

• 𝑞acc, 𝑞rej ∈ 𝑄 are the (distinct) accept state and reject state, respectively. Together, they comprise
the set of final states 𝐹 = {𝑞acc, 𝑞rej}.

• 𝛿 is the transition function. Its input is a non-final state and a tape symbol (as read by the head),
and its output is a new state, a new tape symbol (to be written by the head), and a direction for
the head to move (left or right). Formally, we have

𝛿 : (𝑄 ∖ 𝐹)× Γ → 𝑄× Γ× {𝐿,𝑅}

where 𝐿 and 𝑅 represent “left” and “right,” respectively. The meanings of the components of
the transition function’s domain and codomain are as follows:

𝛿 : (𝑄 ∖ 𝐹)⏟ ⏞
Non-terminal state

× Γ⏟ ⏞
Cell contents

→ 𝑄⏟ ⏞
Next state

× Γ⏟ ⏞
Symbol to write

× {𝐿,𝑅}⏟ ⏞
Where to move the head

We now describe the process by which a Turing machine computes when given an input string, which can be any (finite)
string over the input alphabet Σ. First, the machine is initialized as follows.

• Tape contents: the input string appears written on the tape from left to right, starting at the leftmost cell, with
one symbol per cell. Every other cell contains the blank symbol ⊥.

• The head is positioned at the leftmost cell of the tape.

• The initial “active” state is 𝑞start.

The following illustrates the initial configuration of a machine when the input is the binary string 111010111:

1 1 1 0 1 0 1 1 1 ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$"

A computational step consists of an application of the transition function to the current configuration of a machine—i.e.,
its active state, tape contents, and head position—to produce a new configuration. The machine’s active state must be
a non-final state – otherwise, the machine has halted and no further computation is done. To perform a computational
step from some non-final active state 𝑞 ∈ 𝑄 ∖ 𝐹 , the machine:

1. reads the symbol 𝑠 ∈ Γ at the tape cell at which the head is positioned;

62

Foundations of Computer Science, Release 0.5

2. evaluates the transition function to get (𝑞′ ∈ 𝑄, 𝑠′ ∈ Γ, 𝐷 ∈ {𝐿,𝑅}) = 𝛿(𝑞, 𝑠);

3. makes 𝑞′ ∈ 𝑄 the new active state;

4. writes 𝑠′ to the cell at which the head is positioned;

5. moves the head left or right according to the value of 𝐷.

We stress that the transition function completely determines what happens in steps 3-5, based entirely on the active
state and the symbol that is read by the head. That is, given the current state 𝑞 and tape symbol 𝑠 ∈ Γ, the output
(𝑞′, 𝑠′, 𝑑) = 𝛿(𝑞, 𝑠) of the transition function gives the new active state 𝑞′ (which may be the same as the original state
𝑞), the symbol 𝑠′ to write (which may be the same as the original symbol 𝑠), and the direction in which to move the
head (left or right). By convention, if the head is at the leftmost cell of the tape and the direction is left, then the head
stays in the same (leftmost) position.

A Turing machine computes by repeatedly executing the above computational step, halting only when it transitions to
one of the two final states 𝑞acc or 𝑞rej. If the machine ever reaches the state 𝑞acc, the machine is said to accept the input.
If the machine ever reaches 𝑞rej, it is said to reject the input. As we will discuss more later, there is a third possibility:
that the machine never reaches a final state at all, and continues applying the computational step indefinitely. In this
case, we say that the machine loops forever, or just loops, on the input.

The main differences between finite automata and Turing machines are summarized as follows:

Property Finite Automata Turing Machines
Has an (unbounded) read/write memory (tape) No Yes
Can have zero, or more than one, accept state(s) Yes No
Has a reject state No Yes
Terminates when accept/reject state is reached No Yes
Direction input is read Right Right or Left
Must terminate when entire input is read Yes No

As an example of a Turing machine, here we define a simple machine that accepts any binary string composed entirely
of ones (including the empty string), and rejects any string that contains a zero. The components of the seven-tuple are
as follows:

• Σ = {0, 1},

• Γ = {0, 1,⊥},

• 𝑄 = {𝑞start, 𝑞acc, 𝑞rej},

• the transition function 𝛿 : {𝑞start} × {0, 1,⊥} → {𝑞start, 𝑞acc, 𝑞rej} × {0, 1,⊥}× {𝐿,𝑅} is specified by listing its
output on each input:

𝛿(𝑞start, 0) = (𝑞rej, 0, 𝑅)

𝛿(𝑞start, 1) = (𝑞start, 1, 𝑅)

𝛿(𝑞start,⊥) = (𝑞acc,⊥, 𝑅) .

We can also specify the transition function in tabular format:

old state read symbol new state written symbol direction
𝑞start 0 𝑞rej 0 𝑅
𝑞start 1 𝑞start 1 𝑅
𝑞start ⊥ 𝑞acc ⊥ 𝑅

The machine has just three states: the initial state 𝑞start and the two final states 𝑞acc, 𝑞rej. In each computational step, it
reads the symbol at the tape head, going to the reject state if it is a zero, staying in 𝑞start if it is a one, and transitioning

63

Foundations of Computer Science, Release 0.5

to the accept state if it is a ⊥. In all three cases, the machine leaves the contents of the cell unchanged (it writes the
same symbol as it reads) and moves the head to the right, to the next input symbol (or to the first blank that appears
after the input string).

We have described the machine above by explicitly writing out its seven-tuple, including its entire transition function.
More commonly, we describe a machine using a state diagram instead. Such a diagram is a labeled graph, with a vertex
for each state and edges representing transitions between states. The following is an example of a transition:

q1 q2
1 ! 0, R

qstartqreject qaccept
0 ! 0, R ? ! ?, R

1 ! 1, R

q0 q1

? ! a, R

? ! b, R

1

The edge goes from state 𝑞1 to state 𝑞2, which are the state components of the transition function’s input and output.
The remaining components are noted on the edge label. The example diagram above means that 𝛿(𝑞1, 1) = (𝑞2, 0, 𝑅):
when the machine is in state 𝑞1 and it reads a 1 at the tape head, it transitions to state 𝑞2, writes a 0 at the tape head,
and moves the head to the right.

We emphasize that, because the state-transition function must be a function on the domain (𝑄 ∖ 𝐹)× Γ, for each non-
final state in the diagram there must be exactly one outgoing edge (a transition) for each symbol in the tape alphabet Γ.
Otherwise, the state-transition function would either be incomplete (missing an output for some input) or inconsistently
defined (having multiple different outputs for the same input). Similarly, there cannot be an outgoing arrow from either
of the final states.

The state diagram for the machine we defined above with a seven-tuple is as follows:

q1 q2
1 ! 0, R

qstartqreject qaccept
0 ! 0, R ? ! ?, R

1 ! 1, R

q0 q1

? ! a, R

? ! b, R

1

Let’s run this machine on the input 111010111. The machine starts in the initial state, with the input written on the
tape (followed by blanks) and the head in the leftmost position:

1 1 1 0 1 0 1 1 1 ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$"

64

Foundations of Computer Science, Release 0.5

qstartqreject qaccept
0 → 0, R ⊥ → ⊥, R

1 → 1, R

The cell at the head holds a 1. The transition function (looking at either the seven-tuple or the state diagram) tells us
that 𝛿(𝑞start, 1) = (𝑞start, 1, 𝑅), so the machine stays in the same state, writes the symbol 1 at the head, and moves the
head to the right.

1 1 1 0 1 0 1 1 1 ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$"

qstartqreject qaccept
0 → 0, R ⊥ → ⊥, R

1 → 1, R

Again, we have a 1 at the head location. Again, the machine stays in the same state, leaves the symbol unchanged, and
moves the head to the right.

1 1 1 0 1 0 1 1 1 ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$"

65

Foundations of Computer Science, Release 0.5

qstartqreject qaccept
0 → 0, R ⊥ → ⊥, R

1 → 1, R

Once again, there is a 1 at the head, resulting in the same actions as in the previous two steps.

1 1 1 0 1 0 1 1 1 ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$"

qstartqreject qaccept
0 → 0, R ⊥ → ⊥, R

1 → 1, R

The machine now has a 0 at the head. The transition function has that 𝛿(𝑞start, 0) = (𝑞rej, 0, 𝑅), so the machine transitions
to the state 𝑞rej, leaves the 0 unchanged, and moves the head to the right.

1 1 1 0 1 0 1 1 1 ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#"$%

66

Foundations of Computer Science, Release 0.5

qstartqreject qaccept
0 → 0, R ⊥ → ⊥, R

1 → 1, R

The machine is now in a final state, namely, 𝑞rej, so the computation halts. Since the machine reached the reject state,
it rejects the input 111010111.

Had the input been composed entirely of ones, the machine would have stayed in 𝑞start, moving the head one cell to
the right in each step. After examining all the input symbols, it would reach a cell that contains the blank symbol ⊥.
The transition function tells us that the machine would then move to the accept state 𝑞acc (and leave the blank symbol
unchanged, and move the head to the right). Thus, the machine would accept any input consisting entirely of ones. (This
includes the empty string, because at startup the tape would consist entirely of blanks, so in the very first computational
step the machine would read the blank symbol and transition to the accept state 𝑞acc.)

On any input string, this machine will eventually reach a final state. (For this conclusion we are relying on the fact that
by definition, every string has finite length.) In the worst case, it examines each input symbol once, so it runs in linear
time with respect to the size of the input. While this machine halts on any input, we will soon see that this is not the
case for all machines.

As a second example, consider the following machine:

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

67

Foundations of Computer Science, Release 0.5

This machine has the input alphabet Σ = {0, 1}, the tape alphabet Γ = {0, 1,⊥}, six states 𝑄 =
{𝑞start, 𝑞scan, 𝑞end, 𝑞back, 𝑞acc, 𝑞rej}, and the following transition function:

old state read symbol new state written symbol direction
𝑞start 0 𝑞scan ⊥ 𝑅
𝑞start 1 𝑞rej 1 𝑅
𝑞start ⊥ 𝑞acc ⊥ 𝑅
𝑞scan 0 𝑞scan 0 𝑅
𝑞scan 1 𝑞scan 1 𝑅
𝑞scan ⊥ 𝑞end ⊥ 𝐿
𝑞end 0 𝑞rej 0 𝑅
𝑞end 1 𝑞back ⊥ 𝐿
𝑞end ⊥ 𝑞rej ⊥ 𝑅
𝑞back 0 𝑞back 0 𝐿
𝑞back 1 𝑞back 1 𝐿
𝑞back ⊥ 𝑞start ⊥ 𝑅

Let us trace the execution of this machine on the input 0011. The machine starts in the initial state, with the input
written on the tape (followed by blanks) and the head in the leftmost position:

0 0 1 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$"

68

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head has a zero. The transition function tells us that 𝛿(𝑞start, 0) = (𝑞scan,⊥, 𝑅), so the machine transitions
to state 𝑞scan, writes a blank symbol at the head, and moves the head to the right.

⊥ 0 1 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$

69

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head now has a zero. The transition function tells us that 𝛿(𝑞scan, 0) = (𝑞scan, 0, 𝑅), so the machine stays
in 𝑞scan, leaves the symbol 0 under the head, and moves the head to the right.

⊥ 0 1 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$

70

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head now has a one. The transition function tells us that 𝛿(𝑞scan, 1) = (𝑞scan, 1, 𝑅), so the machine stays
in 𝑞scan, leaves the symbol 1 under the head, and moves the head to the right.

⊥ 0 1 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$

71

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

Again, the cell at the head now has a one, so the machine stays in the same state, leaves the cell unchanged, and moves
the head to the right.

⊥ 0 1 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$

72

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

Now the cell at the head has a blank symbol, so the transition function tells us that the machine transitions to 𝑞end,
leaves the blank in the cell, and moves the head to the left.

⊥ 0 1 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#

73

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head has a one, so the transition function tells us that the machine transitions to 𝑞back, writes a blank to
the cell, and moves the head to the left.

⊥ 0 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$

74

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head has a one, so the transition function tells us that the machine stays in 𝑞back, leaves the one in the
cell, and moves the head to the left.

⊥ 0 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$

75

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head now has a zero, so the transition function tells us that the machine stays in 𝑞back, leaves the zero in
the cell, and moves the head to the left.

⊥ 0 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$

76

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head now has a blank, so the transition function tells us that the machine transitions to 𝑞start, leaves the
blank in the cell, and moves the head to the right.

⊥ 0 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$"

77

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head now has a zero, so the machine transitions to 𝑞scan, writes a blank to the cell, and moves the head
to the right.

⊥ ⊥ 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$

78

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head now has a one, so the machine stays in 𝑞scan, leaves the one in the cell, and moves the head to the
right.

⊥ ⊥ 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$

79

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head has a blank symbol, so the machine transitions to 𝑞end, leaves the blank in the cell, and moves the
head to the left.

⊥ ⊥ 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#

80

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head has a one, so the machine transitions to 𝑞back, writes a blank to the cell, and moves the head to the
left.

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$

81

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head has a blank, so the machine transitions to 𝑞start, leaves a blank in the cell, and moves the head to
the right.

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!"#$"

82

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The cell at the head has a blank, so the machine transitions to 𝑞acc, leaves a blank in the cell, and moves the head to the
right.

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯INFINITE
TAPE

𝑞!""#$%

83

Foundations of Computer Science, Release 0.5

qstart qscan qend

qbackqaccept

qreject

⊥ → ⊥, R

0 → ⊥, R

1 → 1, R

0 → 0, R

1 → 1, R

⊥ → ⊥, L

1→
⊥
, L

0 → ⊥, R

⊥ → ⊥, R

0 → 0, L

1 → 1, L

⊥ →
⊥,
R

The machine has reached the accept state 𝑞acc, so it halts and accepts.

By generalizing the above example, we can see that this machine accepts any input string that consists of some non-
negative number of zeros followed by the same number of ones, and rejects otherwise. In other words, it decides the
language

𝐿 = {0𝑛1𝑛 : 𝑛 ∈ N} = {𝜀, 01, 0011, 000111, . . .} .

Recall that we proved above that this language cannot be decided by a finite automaton. However, we have just seen
that it can be decided by a Turing machine.

How powerful is the Turing-machine model? The Church-Turing thesis asserts the following:

Theorem 59 (Church-Turing Thesis) A function can be computed by an “effective” or “mechanical” proce-
dure—in other words, an algorithm—if and only if can be computed by a Turing machine.

The terms “effective” and “mechanical” are not precisely and formally defined, so the Church-Turing thesis is not a
statement that can be proved or disproved. Instead, it is an assertion that any well-defined procedure consisting of a
finite number of precise instructions, which can be executed without any ingenuity or creativity, and which halts after
a finite number of steps and produces a correct answer, can be represented by a Turing machine. Alternatively, it can
be seen as the definition of what “algorithm” formally means: anything that can be represented by a Turing machine.

Support for the Church-Turing thesis can be found in the fact that many quite different-looking proposed models of
computation have been shown to be equivalent to the Turing-machine model: whatever can be computed in such a
model can also be computed by a Turing machine, and vice-versa. These include the lambda calculus and its variants,
general recursive functions, most widely used computer programming languages, and more. So, despite the simplicity
of the Turing-machine model, we have good reason to believe that it captures the essential nature of computation.

84

Foundations of Computer Science, Release 0.5

8.1 The Language of a Turing Machine

Now that we have formal definitions of both languages and Turing machines, which respectively formalize the notions
of problems and algorithms (or programs), we connect them together. Recall that a Turing machine 𝑀 has an input
alphabet Σ, and Σ* is the set of all possible inputs to the machine. When 𝑀 is run on an input 𝑥 ∈ Σ*, which we often
denote with the notation 𝑀(𝑥), there are three possible, mutually exclusive behaviors:

• 𝑀 accepts 𝑥, often written as “𝑀(𝑥) accepts”: 𝑀 eventually halts due to reaching the accept state 𝑞acc;

• 𝑀 rejects 𝑥, often written as “𝑀(𝑥) rejects”: 𝑀 eventually halts due to reaching the reject state 𝑞rej;

• 𝑀 loops on 𝑥, often written as “𝑀(𝑥) loops”: 𝑀 never reaches a final state, and its execution continues forever.

Definition 60 (Language of a Turing machine) The language𝐿(𝑀) of a Turing machine𝑀 is the set of strings
that the machine accepts:

𝐿(𝑀) = {𝑥 : 𝑀 accepts 𝑥} .

{𝑥 ∶ 𝑀
accepts 𝑥}

{𝑥 ∶ 𝑀
rejects 𝑥}

{𝑥 ∶ 𝑀 loops
on 𝑥}

Σ∗
𝑳(𝑴)

By definition, every Turing machine 𝑀 has a corresponding language 𝐿(𝑀), and 𝑥 ∈ 𝐿(𝑀) if and only if 𝑀(𝑥)
accepts; thus, 𝑥 /∈ 𝐿(𝑀) if and only if 𝑀(𝑥) rejects or loops.

For example, for the machine above that accepts all strings (and only those strings) that consist entirely of ones, we
have that 𝐿(𝑀) = {1}* = {𝜀, 1, 11, 111, . . .}.

Some Turing machines halt (i.e., accept or reject) on every input; they do not loop on any input. Such a machine is
called a decider, and it is said to decide its language.

8.1. The Language of a Turing Machine 85

Foundations of Computer Science, Release 0.5

{𝑥 ∶ 𝑀
accepts 𝑥}

{𝑥 ∶ 𝑀
rejects 𝑥}

Σ∗
𝑳(𝑴)

Definition 61 (‘Decides’ for Turing machines) A Turing machine 𝑀 decides a language 𝐿 ⊆ Σ* if:

1. 𝑀 accepts every 𝑥 ∈ 𝐿, and

2. 𝑀 rejects every 𝑥 /∈ 𝐿.

Equivalently:

1. 𝑀 halts on every 𝑥 ∈ Σ*, and

2. 𝑥 ∈ 𝐿 if and only if 𝑀 accepts 𝑥.

A language is decidable if some Turing machine decides it.

The equivalence between the two pairs of conditions can be seen as follows: the first pair of properties immediately
implies the latter pair. For the latter pair, the first property implies that on every input, 𝑀 either accepts or rejects, and
then the second property implies that 𝑀 accepts every 𝑥 ∈ 𝐿 and rejects every 𝑥 /∈ 𝐿, as needed.

In general, a Turing machine might not decide any language, because it might loop on one or more inputs. But if 𝑀
is a decider—i.e., it does not loop on any input—then 𝑀 decides its language 𝐿(𝑀), and does not decide any other
language. In other words, a particular Turing machine decides at most one language.

We also briefly mention a relaxation of the notion of deciding, called recognizing.

Definition 62 (‘Recognizes’ for Turing machines) A Turing machine 𝑀 recognizes a language 𝐿 ⊆ Σ* if:

1. 𝑀 accepts every 𝑥 ∈ 𝐿, and

2. 𝑀 rejects or loops on every 𝑥 /∈ 𝐿.

Equivalently: 𝑥 ∈ 𝐿 if and only if 𝑀 accepts 𝑥.

A language is recognizable if some Turing machine recognizes it.

In comparison to deciding (Definition 61), here 𝑀 must still accept every string in the language, but it is not required
to halt on every input: it may loop on any string not in the language (indeed, it may loop on all such strings!). So, if a
machine decides a language, it also recognizes that language, but not necessarily vice-versa. Observe that, by definition,
every Turing machine 𝑀 recognizes exactly one language, namely, the machine’s language 𝐿(𝑀). See Recognizability
(page 123) for further details and results.

Altogether, we now have the following formalizations:

• A language is the formalization of a decision problem.

8.1. The Language of a Turing Machine 86

Foundations of Computer Science, Release 0.5

• A Turing machine is the formalization of a program or algorithm.

• A machine deciding a language is the formalization of a program solving a decision problem.

Thus, our original question about whether a given problem is solvable by a computer is the same as asking whether its
corresponding language is decidable.

8.2 Decidable Languages

By definition, a language is decidable if some Turing machine decides it, i.e., the machine accepts every string in the
language and rejects every string not in the language. Does this mean that, to demonstrate that a language is decidable,
we must formally define the seven-tuple of such a Turing machine? Fortunately, no. Because all known computer
programming languages, including valid pseudocode, can be simulated by a Turing machine (see the Church-Turing
thesis (page 84)), we can write an algorithm in such a language and be assured that there is a corresponding Turing
machine. As an example, consider the following language:

𝐿GCD = {(𝑎 ∈ N, 𝑏 ∈ N) : gcd(𝑎, 𝑏) = 1} .

An algorithm to decide this language is as follows:

function DecideGCD(𝑎, 𝑏)
if Euclid(max(𝑎, 𝑏),min(𝑎, 𝑏)) = 1 then accept
reject

We now analyze this algorithm to show that it decides 𝐿GCD, according to Definition 61:

• If (𝑎, 𝑏) ∈ 𝐿GCD, then gcd(𝑎, 𝑏) = 1 by definition, so the call to Euclid returns 1, hence DecideGCD accepts
(𝑎, 𝑏).

• If (𝑎, 𝑏) /∈ 𝐿GCD, then gcd(𝑎, 𝑏) ̸= 1, so the call to Euclid returns a value not equal to 1, hence DecideGCD
rejects (𝑎, 𝑏).

Alternatively, we can analyze the algorithm as follows: first, it halts on any input, because Euclid does (recall that
Euclid runs in 𝑂(log(𝑎+ 𝑏)) iterations, in the worst case). Second, (𝑎, 𝑏) ∈ 𝐿GCD if and only if gcd(𝑎, 𝑏) = 1, which
holds if and only if DecideGCD(𝑎, 𝑏) accepts, by the correctness of Euclid and direct inspection of the pseudocode
of DecideGCD.

Thus, DecideGCD decides 𝐿GCD, so 𝐿GCD is a decidable language.

In general, to demonstrate that a particular language is decidable, we first write an algorithm, and then analyze the
algorithm to show that it decides the language, according to Definition 61. Depending on how the algorithm is written,
it may be more convenient to establish one pair of properties or the other from Definition 61. As in the above example,
we will often show both ‘styles’ of analysis, although only one is needed for a particular proof.

Here we show some examples of how performing certain operations on decidable languages preserves decidability.

Lemma 63 Let 𝐿 be any decidable language. Then 𝐿′ = 𝐿 ∪ {𝜀} is also decidable.

Proof 64 By definition, since 𝐿 is decidable, there exists some Turing machine 𝐷 that decides 𝐿. We use it
construct another machine 𝐷′ that decides 𝐿′ (more precisely, because 𝐷 exists, the following machine also
exists):

function 𝐷′(𝑥)
if 𝑥 = 𝜀 then accept

8.2. Decidable Languages 87

Foundations of Computer Science, Release 0.5

return 𝐷(𝑥)

We analyze the behavior of 𝐷′ on an arbitrary input string 𝑥, as follows:

• If 𝑥 ∈ 𝐿′ = 𝐿 ∪ {𝜀}, then either 𝑥 = 𝜀 or 𝑥 ∈ 𝐿 (or both). In the first case, 𝐷′(𝑥) accepts by the first line
of pseudocode. In the second case, 𝐷(𝑥) accepts because 𝐷 decides 𝐿. So, in either case, 𝐷′(𝑥) accepts,
as needed.

• If 𝑥 /∈ 𝐿′ = 𝐿 ∪ {𝜀}, then 𝑥 ̸= 𝜀 and 𝑥 /∈ 𝐿. Therefore, the first line of pseudocode does not accept, and
then on the second line 𝐷(𝑥) rejects, so 𝐷′(𝑥) rejects, as needed.

So, by Definition 61, 𝐷′ does indeed decide 𝐿′, hence 𝐿′ is decidable.

Alternatively, we can use the other pair of conditions in Definition 61 to analyze 𝐷′ as follows. First, 𝐷′ halts on
every input, because its first line does not loop, and on the second line 𝐷 does not loop because it is a decider.
Next,

𝑥 ∈ 𝐿′ ⇐⇒ 𝑥 ∈ 𝐿 ∪ {𝜀}
⇐⇒ 𝑥 = 𝜀 or 𝑥 ∈ 𝐿

⇐⇒ 𝐷′(𝑥) accepts on the first line, or 𝐷(𝑥) accepts
⇐⇒ 𝐷′(𝑥) accepts.

We emphasize that for this second style of analysis, it is very important that all the implications hold in both
“directions” (i.e., be “if and only if” statements), which needs to be carefully checked. □

Lemma 65 For any decidable languages 𝐿1 and 𝐿2, their union 𝐿 = 𝐿1 ∪ 𝐿2 = {𝑥 : 𝑥 ∈ 𝐿1 or 𝑥 ∈ 𝐿2} is
also decidable.

Proof 66 Since 𝐿1 and 𝐿2 are decidable, there exist machines 𝑀1 and 𝑀2, respectively, that decide them. That
is, 𝑀1 accepts every string in 𝐿1 and rejects every string not in 𝐿1, and similarly for 𝑀2 and 𝐿2. We use them to
construct a new machine 𝑀 that decides 𝐿 (again, because 𝑀1,𝑀2 exist, so does the following machine 𝑀):

function 𝑀 (𝑥)
if 𝑀1(𝑥) accepts then accept
if 𝑀2(𝑥) accepts then accept
reject

We analyze the behavior of 𝑀 on an arbitrary input string 𝑥, as follows:

• If 𝑥 ∈ 𝐿 = 𝐿1 ∪𝐿2, then 𝑥 ∈ 𝐿1 or 𝑥 ∈ 𝐿2 (or both). If the former case, 𝑀1(𝑥) accepts and hence 𝑀(𝑥)
accepts on its first line, and in the latter case, 𝑀2(𝑥) accepts and hence 𝑀(𝑥) accepts on its second line.
Either way, 𝑀(𝑥) accepts, as needed.

• If 𝑥 /∈ 𝐿, then 𝑥 /∈ 𝐿1 and 𝑥 /∈ 𝐿2. So, both 𝑀1(𝑥) and 𝑀2(𝑥) reject, and hence 𝑀(𝑥) reaches it final line
and rejects, as needed.

So, by Definition 61, 𝑀 does indeed decide 𝐿, hence 𝐿 is decidable.

Alternatively, we can use the other pair of conditions in Definition 61 to analyze 𝑀 as follows. First, 𝑀 halts on
every input, because its calls to 𝑀1 and 𝑀2 halt (since they are deciders). Next, by the properties of 𝑀1,𝑀2 and
the definition of 𝑀 ,

𝑥 ∈ 𝐿 ⇐⇒ 𝑥 ∈ 𝐿1 or 𝑥 ∈ 𝐿2

⇐⇒ 𝑀1(𝑥) accepts or 𝑀2(𝑥) accepts
⇐⇒ 𝑀(𝑥) accepts ,

8.2. Decidable Languages 88

Foundations of Computer Science, Release 0.5

where the last line holds by inspection of the code of 𝑀 . □

Example 65 demonstrates that the class of decidable languages is closed under union: if we take the union of any two
members of the class, the result is also a member of the class, i.e., it is a decidable language.

Exercise 67 Show that the class of decidable languages is closed under:

a) intersection (i.e., if 𝐿1 and 𝐿2 are decidable, then so is 𝐿1 ∩ 𝐿2);

b) complement (i.e., if 𝐿 is decidable, then so is 𝐿).

Is every language decidable (by a Turing machine)? In other words, can every decision problem be solved by some
algorithm? We will consider this question below starting with the section on Diagonalization (page 92), following a
digression on alternative but equivalent models of Turing machines.

8.3 Equivalent Models

As an illustration of the power of the simple “one-tape” Turing-machine model defined above, we will demonstrate
that an extended model, that of the two-tape Turing machine, is actually no more powerful than the original one-tape
model. Similar equivalences can be demonstrated for other natural variations of the Turing-machine model, such as
one with a two-way infinite tape, one with a two-dimensional (or any finite-dimensional) tape, one with (a finite number
of) multiple heads, one with nondeterministic operations, and combinations thereof.

Similar to the one-tape version, the two-tape model consists of a seven-tuple:

𝑀 = (Σ,Γ, 𝑄, 𝑞start, 𝑞acc, 𝑞rej, 𝛿) .

The components Σ, Γ, 𝑄, 𝑞start, 𝑞acc, and 𝑞rej are exactly as in the one-tape model. The transition function 𝛿, however,
now takes two tape symbols as input, and outputs two tape symbols and two directions—in all cases, one for each tape
head. Formally, we have

𝛿 : (𝑄 ∖ 𝐹)× Γ2 → 𝑄× Γ2 × {𝐿,𝑅}2 .

(Recall that the notation Γ2 is shorthand for Γ × Γ.) In more detail, the components of the transition function are as
follows:

𝛿 : (𝑄 ∖ 𝐹)⏟ ⏞
non-terminal state

× Γ⏟ ⏞
Cell contents on tape 1

× Γ⏟ ⏞
Cell contents on tape 2

→

𝑄⏟ ⏞
New state

× Γ⏟ ⏞
Symbol to write on tape 1

× Γ⏟ ⏞
Symbol to write on tape 2

× {𝐿,𝑅}⏟ ⏞
Where to move head 1

× {𝐿,𝑅}⏟ ⏞
Where to move head 2

The initial state of the machine has the input written on the first tape, followed by blank symbols, and only blank
symbols on the second tape. Both heads begin at the leftmost cells of their respective tapes.

8.3. Equivalent Models 89

Foundations of Computer Science, Release 0.5

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⋯TAPE 2

𝑞!"#$"

1 1 1 0 1 0 1 1 1 ⊥ ⊥ ⊥ ⊥ ⋯TAPE 1

In each step, the machine is in some state 𝑞 and reads one symbol from each tape, say, 𝛾1 and 𝛾2. The transition function
maps (𝑞, 𝛾1, 𝛾2) to the next state, symbols to write on each tape, and directions to move each head:

𝛿(𝑞, 𝛾1, 𝛾2) = (𝑞′, 𝛾′
1, 𝛾

′
2, 𝑑1, 𝑑2) .

The machine transitions to state 𝑞′, writes 𝛾′
1 to the first tape and moves its head in the direction 𝑑1, and writes 𝛾′

2 to
the second tape and moves its head in the direction 𝑑2.

We now show that the one-tape and two-tape models are equivalent, by proving that anything that can be computed
in one model can also be computed by the other. In other words, for every one-tape Turing machine, there is a cor-
responding two-tape machine that, for each input, has exactly the same output behavior (accept, reject, or loop); and
likewise, for every two-tape machine, there is a corresponding one-tape machine.

The first direction is conceptually trivial: for any one-tape Turing machine, we can construct an equivalent two-tape
machine that just ignores its second tape. Formally, the two-tape machine has the same tape and input alphabets Σ and
Γ, the same set of states 𝑄, and the same start and final states 𝑞start, 𝑞acc, and 𝑞rej. The transition function 𝛿2 is slightly
more subtle. For each entry

𝛿(𝑞, 𝛾) = (𝑞′, 𝛾′, 𝑑)

of the one-tape machine, the two-tape machine’s transition function has the corresponding entries

𝛿2(𝑞, 𝛾, 𝛾2) = (𝑞′, 𝛾′, 𝛾2, 𝑑, 𝑅)

for every 𝛾2 ∈ Γ. In other words, in each computational step, the two-tape machine ignores the contents of its second
tape and moves its second head to the right, and does whatever the one-tape machine does with the first tape. (Note
that even though the second tape consists of all blanks, to have a well-defined transition function 𝛿2 we must define the
function for all pairs of tape symbols, which is why we need to consider every 𝛾2 ∈ Γ.) Since the machine’s behavior
is solely dependent on the contents of the first tape, the two-tape machine makes exactly the same transitions as the
one-tape machine on a given input, and it ends up accepting, rejecting, or looping on each input exactly as the one-tape
machine does.

The other direction of the equivalent is significantly more complicated: for an arbitrary two-tape machine, we need to
construct a one-tape machine that produces the same output behavior on any given input. There are many ways to do
this, and we describe one such construction at a high level.

First, we consider how a one-tape machine can store the contents of two tapes, as well as two head positions. A key
observation is that any point during the two-tape machine’s computation, the amount of actual data (i.e., excluding
trailing blank cells) on the two tapes is finite. Thus, we can store that data on a single tape just as well. We use the
following format:

· · · ∙ 𝛾1 · · ·⏟ ⏞
Contents of Tape 1

· · · ∙ 𝛾2 · · ·⏟ ⏞
Contents of Tape 2

#

8.3. Equivalent Models 90

Foundations of Computer Science, Release 0.5

We use a special # symbol (which we include in the tape alphabet of the one-tape machine) to separate the (finite)
contents of each tape, and to indicate the endpoints of those contents. Between these markers, the contents of each tape
are represented using the same tape symbols as in the two-tape machine, except that we denote the position of each
head by placing a special ‘dot’ symbol ∙ (which we also include in the tape alphabet) to the left of the cell at which the
head is currently located. Thus, if Γ is the tape alphabet of the two-tape machine, then the tape alphabet of the one-tape
machine is

Γ1 = Γ ∪ {#, ∙} .

We won’t give a formal definition of the states or transition function, but we will describe how the machine works at a
high level. Given an input 𝑤1𝑤2 . . . 𝑤𝑛, the one-tape machine does the following:

1. Rewrite the tape to be in the correct format:

∙ 𝑤1 · · ·𝑤𝑛# ∙ ⊥#

This entails shifting each input symbol by two spaces, placing a # marker in the first cell and a dot in the second,
placing a # marker after the last input symbol (at the first blank cell), writing a dot symbol in the next cell,
followed by a blank symbol, followed by one more # marker.

2. Simulate each step of the two-tape machine:

a) Scan the tape to find the two dot symbols, representing the positions of each head, and ‘remember’ the
symbols stored to the right of the dots. (Because there are only a finite number of possibilities, the machine
can ‘remember’ these symbols via a finite number of states, without writing anything to the tape.)

b) Transition to a new state according to the transition function of the two-tape machine (depending on the
current state and the symbols immediately to the right of the dots).

c) Replace the symbols to the right of each dot with the symbols to be written to each tape, as specified in the
transition function of the two-tape machine.

d) Move the dots in the appropriate directions. If a dot is to move to the left but there is a # marker there,
then it stays in the same position (corresponding to what happens when a tape head tries to move left when
at the leftmost tape cell). On the other hand, if the dot is to move to the right but there is a # marker one
more cell to the right, shift the marker and all the symbols following it (up to the final # marker) one cell to
the right, placing a blank symbol in the space created by the shift. This ensures that there is a valid symbol
to the right of the dot (i.e., at the corresponding head) that can be read in the next simulated step.

Constructing this one-tape machine from the definition of the two-tape machine is a tedious, but completely mechanical,
process. The important point is that the one-tape machine perfectly simulates the operation of the original two-tape
machine, even though it typically takes many steps to carry out what the original machine does in a single step. If the
two-tape machine accepts an input, then the one-tape simulation will do so as well, and similarly if the original machine
rejects or loops.

We have demonstrated that a two-tape Turing-machine model is equivalent to the simpler, one-tape model. In general,
a computational model or programming language that is powerful enough to simulate any one-tape Turing machine
is said to be Turing-complete. In the other direction, a Turing-complete model is said to be Turing-equivalent if it
can be simulated by a Turing machine; recall that the Church-Turing thesis asserts that any effective procedure can be
simulated by a Turing machine.

All real-world programming languages, including C++, Python, and even LaTeX, are Turing-complete, and all of them
can be simulated by a Turing machine. Thus, the results we prove about computation using the Turing-machine model
also apply equivalently to real-world models. The simplicity of Turing machines makes such results easier to prove
than if we were to reason about C++ or other complicated languages.

8.3. Equivalent Models 91

CHAPTER

NINE

DIAGONALIZATION

Is every language decidable (by a Turing machine)? We have seen that every machine has an associated language (of
strings the machine accepts), but does every language have a corresponding machine that decides it? We consider this
question next.

One way of answering the question of whether there exists an undecidable language is to compare the “number” of
languages with the “number” of machines. Let ℒ be the set of all languages, and let ℳ be the set of all machines. If
we could demonstrate that ℒ is a “larger” set than ℳ, i.e., that “|ℳ| < |ℒ|”, then there are “more” languages than
machines, and it follows that there must be some language that does not have a corresponding machine.

However, both ℳ and ℒ are infinite sets, which is why we have put the terms “number”, “more”, etc. in “scare
quotes”—these terms typically apply only to finite quantities. In order to make the above approach work, we need
appropriate tools to reason about the sizes of infinite sets.

9.1 Countable Sets

We refer to the size of a set as its cardinality, which measures the number of elements in the set. For a finite set, its
cardinality is an element of the natural numbers N. For an infinite set, on the other hand, the number of elements is not
a natural number.20For our purposes, however, we need only to reason about the relative sizes of infinite sets to answer
questions like whether “|ℳ| < |ℒ|”.

To start with, we recall some terminology related to functions. A (total) function 𝑓 : 𝐴 → 𝐵 associates, or maps, each
element 𝑎 ∈ 𝐴 to some element 𝑓(𝑎) ∈ 𝐵. (This is in contrast to a partial function, which may leave some elements
of 𝐴 unmapped.)

Definition 68 (Injective/one-to-one, “no larger than”) A (total) function 𝑓 : 𝐴 → 𝐵 is injective, or one-to-one,
if it maps each element of 𝐴 to a different element of 𝐵. In other words, 𝑓 is injective if

𝑓(𝑎1) ̸= 𝑓(𝑎2) for all 𝑎1 ̸= 𝑎2 (where 𝑎1, 𝑎2 ∈ 𝐴).

If an injective function 𝑓 : 𝐴 → 𝐵 exists, then we write |𝐴| ≤ |𝐵|, and say that “𝐴 is no larger than 𝐵.”

Intuitively, the existence of an injective function from 𝐴 to 𝐵 shows that 𝐵 has “at least as many elements as” 𝐴,
which is why we write |𝐴| ≤ |𝐵|. The power of comparing cardinalities via injective functions, as opposed to just by
counting elements, is that it is also meaningful and works in (some) expected ways even for infinite sets. For example,
it is possible to show the following.

Exercise 69 Prove that if 𝐴 ⊆ 𝐵, then |𝐴| ≤ |𝐵|. (Hint: there is a trivial injective function from 𝐴 to 𝐵.)

20 There are other kinds of numbers21 that can represent the sizes of infinite sets, but they are beyond the scope of this text.
21 https://en.wikipedia.org/wiki/Cardinal_number

92

https://en.wikipedia.org/wiki/Cardinal_number

Foundations of Computer Science, Release 0.5

Exercise 70 Prove that if |𝐴| ≤ |𝐵| and |𝐵| ≤ |𝐶|, then |𝐴| ≤ |𝐶|. (Hint: compose injective functions.)

However, we strongly caution that in the context of infinite sets, the notation |𝐴| ≤ |𝐵| has just the specific meaning
given by Definition 68; it may not satisfy other properties that you are accustomed to for comparing finite quantities.
For example, we cannot necessarily add or subtract on both sides of the ≤ symbol and preserve the inequality. When
in doubt, refer to the definition.

We are most interested in reasoning about how the sizes of various sets compare to “standard” infinite sets like the
natural numbers N. We first define the notion of a “countable” set, which is one that is “no larger than” the set N of
natural numbers.

Definition 71 (Countable) A set 𝑆 is countable if |𝑆| ≤ |N|, i.e., if there exists an injective function 𝑓 : 𝑆 → N
from 𝑆 to the natural numbers N.

For example, the set 𝑆 = {𝑎, 𝑏, 𝑐} is countable, since the following function is injective:

𝑓(𝑎) = 0

𝑓(𝑏) = 1

𝑓(𝑐) = 2 .

In fact, any finite set 𝑆 is countable: we can just list all the elements of 𝑆, assigning them to natural numbers in the
order that we listed them. Moreover, this idea doesn’t just apply to finite sets: the same strategy can apply to an infinite
set, as long as we have some way of listing its elements in some order, as the following lemma shows.

Lemma 72 A set 𝑆 is countable if and only if there is some enumeration (or list) of its elements as 𝑆 =
{𝑠0, 𝑠1, 𝑠2, . . .}, in which each 𝑠 ∈ 𝑆 appears (at least once) as 𝑠 = 𝑠𝑖 for some 𝑖 ∈ N.

Proof 73 First we show that if there is some enumeration 𝑠0, 𝑠1, 𝑠2, . . . of the elements in 𝑆, then there is an
injective function 𝑓 from 𝑆 to N. For each 𝑠 ∈ 𝑆, simply define 𝑓(𝑠) = 𝑖 to be the smallest (i.e., first) index 𝑖 for
which 𝑠 = 𝑠𝑖. By assumption, every 𝑠 ∈ 𝑆 has such an index, so 𝑓 is a (total) function. And 𝑓 is injective: if
𝑠 ̸= 𝑠′, then 𝑓(𝑠) ̸= 𝑓(𝑠′) because two different elements of 𝑆 cannot occupy the same position in the list.

Now we show the opposite direction, that if there is an injective function 𝑓 : 𝑆 → N, then there is an enumeration
of 𝑆 (in which each element appears exactly once, in fact). Essentially, we list the elements of 𝑆 in “sorted order”
by their associated natural numbers (under 𝑓). Formally, we define the sequence as: 𝑓−1(0) if it exists, then
𝑓−1(1) if it exists, then 𝑓−1(2) if it exists, etc. Here 𝑓−1(𝑖) ∈ 𝑆 denotes the element of 𝑆 that 𝑓 maps to 𝑖 ∈ N,
if it exists; note that such an element is unique because 𝑓 is injective. Since 𝑓 is a (total) function, every 𝑠 ∈ 𝑆
maps to exactly one 𝑖 ∈ N, so 𝑠 will appear exactly once in the enumeration, as claimed. □

As a concrete example of the second direction in the above proof, consider the injective function 𝑓 : {𝑥, 𝑦, 𝑧} → N
defined by 𝑓(𝑥) = 376, 𝑓(𝑦) = 203, and 𝑓(𝑧) = 475. Exactly three values of 𝑓−1(𝑖) for 𝑖 ∈ N exist—namely, for
𝑖 = 203, 376, 475—and they yield the enumeration 𝑓−1(203) = 𝑦, 𝑓−1(376) = 𝑥, 𝑓−1(475) = 𝑧 according to the
above proof.

Lemma 72 allows us to prove that a set is countable by describing an enumeration and showing that every element of
the set appears somewhere in it, rather than explicitly defining an injective function from the set to the naturals. Finding
an enumeration can be more convenient in many cases, as we will now see with some examples.

Example 74 We show that the set of integersZ is countable. Observe that a first attempt of listing the non-negative
integers, then the negative integers, does not work:

0, 1, 2, 3, . . . ,−1,−2, . . .

There are infinitely many non-negative integers, so we never actually reach the negative ones. In other words, the
above is not a valid enumeration of the integers, because there is no finite (natural number) position at which −1
(or any other negative number) appears.

9.1. Countable Sets 93

Foundations of Computer Science, Release 0.5

An attempt that does work is to order the integers by their absolute values, which interleaves the positive and
negative elements:

0, 1,−1, 2,−2, 3,−3, . . .

An arbitrary positive integer 𝑖 appears at (zero-indexed) position 2𝑖 − 1, and an arbitrary negative integer −𝑖
appears at position 2𝑖. Thus, each integer appears at some finite position in the list.

The above corresponds to the following injective function 𝑓 : Z → N:

𝑓(𝑖) =

{︃
2𝑖− 1 if 𝑖 > 0

−2𝑖 otherwise.

Therefore, Z is countable, and thus countably infinite.

Example 75 We now show that the set of positive rational numbers Q+ is countable. A positive rational number
𝑞 ∈ Q+ can be written as the ratio 𝑥/𝑦 of a pair of positive integers 𝑥, 𝑦 ∈ N+. So we start by showing that the
set of pairs of natural numbers N× N is countable.

We use a similar idea to what we did to show thatZ is countable, i.e., demonstrating an interleaving of the elements
that results in a valid enumeration. To get some inspiration, we can write down the pairs in two dimensions:

𝟏 𝟐 𝟑 𝟒 𝟓

𝟏 (1,1) (1,2) (1,3) (1,4) (1,5)

𝟐 (2,1) (2,2) (2,3) (2,4) (2,5)

𝟑 (3,1) (3,2) (3,3) (3,4) (3,5)

𝟒 (4,1) (4,2) (4,3) (4,4) (4,5)

𝟓 (5,1) (5,2) (5,3) (5,4) (5,5)

To demonstrate an injective mapping to N, however, we need to describe a one-dimensional list. Observe that we
can do so by listing pairs (𝑥, 𝑦) in order by the “anti-diagonals” satisfying 𝑥 + 𝑦 = 𝑘 for 𝑘 = 2, 3, 4, Each
anti-diagonal has a finite number of elements (specifically, 𝑘 − 1), so for any particular pair, we eventually reach
it after listing a finite number of diagonals.

9.1. Countable Sets 94

Foundations of Computer Science, Release 0.5

𝟏 𝟐 𝟑 𝟒 𝟓

𝟏 (1,1) (1,2) (1,3) (1,4) (1,5)

𝟐 (2,1) (2,2) (2,3) (2,4) (2,5)

𝟑 (3,1) (3,2) (3,3) (3,4) (3,5)

𝟒 (4,1) (4,2) (4,3) (4,4) (4,5)

𝟓 (5,1) (5,2) (5,3) (5,4) (5,5)

We can proceed in the same way for Q+. Observe that there are now duplicate elements in the enumeration;
for example, 2/2 is equal to 1/1. If we wish to, we can avoid duplicates by simply skipping over them when
we encounter them. However, Lemma 72 allows an enumeration to contain duplicates, so skipping them is not
necessary.

𝟏 𝟐 𝟑 𝟒 𝟓

𝟏 1/1 1/2 1/3 1/4 1/5

𝟐 2/1 2/2 2/3 2/4 2/5

𝟑 3/1 3/2 3/3 3/4 3/5

𝟒 4/1 4/2 4/3 4/4 4/5

𝟓 5/1 5/2 5/3 5/4 5/5

𝟏 𝟐 𝟑 𝟒 𝟓

𝟏 1/1 1/2 1/3 1/4 1/5

𝟐 2/1 2/2 2/3 2/4 2/5

𝟑 3/1 3/2 3/3 3/4 3/5

𝟒 4/1 4/2 4/3 4/4 4/5

𝟓 5/1 5/2 5/3 5/4 5/5

Since we can construct an enumeration of the positive rationals Q+, this set is countable.

Exercise 76 Show that the set Q of all rationals (both positive, negative, and zero) is countable. (Hint: use the
fact that Q+ is countable along with the idea from Example 74.)

9.2 Uncountable Sets

So far, we have demonstrated that several infinite sets are countable. But it turns out that not every set is countable;
some are uncountable. How can we show this? We need to show that there does not exist any injective function from
the set to the naturals. Equivalently (by Lemma 72), we need to show that there is no list that enumerates every element
of the set.

In general, it is challenging to prove that there does not exist an object having certain properties. It is not enough
to show that several attempts to construct such an object fail, because maybe some other clever attempt we have not
thought of yet could work! Instead, we can sometimes prove the non-existence of an object via an indirect route: proof
by contradiction. That is, we assume that an object having the properties does exist, and then use it to derive a logical
contradiction. It follows that no such object exists.

9.2. Uncountable Sets 95

Foundations of Computer Science, Release 0.5

The above strategy is often successful for showing the uncountability of certain sets. As a first example, we prove
the following theorem using a technique called diagonalization. We assume, for the purpose of contradiction, that an
enumeration of the set exists, and then we “use this enumeration against itself” to construct an element of the set that
is not in the enumeration—a contradiction. The technique is called “diagonalization” because we construct the special
element by going “down the diagonal” of the assumed enumeration and making different choices, so that the element
differs from each element in the list in at least one position.

Theorem 77 The set of real numbers in the interval (0, 1) is uncountable.

Proof 78 Suppose for the sake of establishing a contradiction that this set is countable, which means that there is
an enumeration 𝑟0, 𝑟1, 𝑟2, . . . of the reals in (0, 1). If we imagine writing the decimal expansions of these elements
as the rows of an infinite table, the result looks something like the following:

𝑟! : 0	. 1 2 1 5 6 6

𝑟": 0	. 2 3 3 9 9 7

𝑟# : 0	. 4 5 6 7 1 1
⋯

𝑟$: 0	. 3 2 8 9 4 5

𝑟%: 0	. 3 4 1 7 7 5

𝑟&: 0	. 4 2 4 3 2 3

⋮ ⋱

The decimal expansion in each row continues indefinitely to the right. If a number has a finite decimal represen-
tation, we pad it to the right with infinitely many zeros.

We now use this list to construct a real number 𝑟* ∈ (0, 1) in a certain way as follows: we choose the 𝑖th digit
of 𝑟* (zero-indexed, after the decimal point) so that it differs from the 𝑖th digit of element 𝑟𝑖 in the list. We also
choose these digits to not have an infinite sequence of 0s or 9s, so that 𝑟* has a unique decimal expansion. (This
avoids the possibility that 𝑟* has two different decimal expansions, like 0.1999 · · · = 0.2000 · · ·.) For example:

9.2. Uncountable Sets 96

Foundations of Computer Science, Release 0.5

𝑟! : 0	. 1 2 1 5 6 6

𝑟": 0	. 2 3 3 9 9 7

𝑟# : 0	. 4 5 6 7 1 1
⋯

𝑟$: 0	. 3 2 8 9 4 5

𝑟%: 0	. 3 4 1 7 7 5

𝑟&: 0	. 4 2 4 3 2 3

⋮ ⋱

𝑟∗ : 0	. 2 4 7 1 9 4 ?

Here, 𝑟0 has 1 as its 0th digit, so we arbitrarily choose 2 as the 0th digit of 𝑟*. Similarly, 𝑟1 has 3 as its 1st digit,
so we arbitrarily choose 4 as the 1st digit of 𝑟*; 𝑟2 has 6 as its 2nd digit, so we arbitrarily choose 7 for the 2nd
digit of 𝑟*, and so on. Thus, 𝑟* differs from 𝑟𝑖 in the 𝑖th digit.

We now make a critical claim: 𝑟* does not appear in the assumed enumeration of the elements of (0, 1). To see
this, consider some arbitrary position 𝑖 and the value 𝑟𝑖 that appears there in the enumeration. By construction,
the 𝑖th digits of 𝑟* and 𝑟𝑖 are different, and 𝑟* has a unique decimal expansion, so 𝑟* ̸= 𝑟𝑖. Since the position 𝑖
was arbitrary, this means that 𝑟* does not appear in the list.

We have therefore arrived at a contradiction, because we assumed at the start that every real number in (0, 1)
appears somewhere in the enumeration, but 𝑟* ∈ (0, 1) is a real number that does not. So, our original assumption
must be false, and therefore the set of real numbers in (0, 1) is uncountable, as claimed. □

Exercise 79 If we try to adapt the proof of Theorem 77 to prove that the set Z of integers is uncountable, where
does the attempted proof fail (as it must, because Z is countable by Example 74)? Hint: what is different about
the decimal expansions of real numbers versus integers?

As we will see next, diagonalization is a very powerful and general technique for proving not just the uncountability of
certain sets, but also the undecidability of certain languages.

9.3 The Existence of an Undecidable Language

Returning to our original question of how the set of machines ℳ is related to the set of languages ℒ, we can show
using the above techniques that ℳ is countable, whereas ℒ is uncountable. We can use this to show that there are
languages that are not decided by any Turing machine, i.e., they are undecidable. In fact, we can even show that there
are uncountably more undecidable languages than decidable languages. Thus, in a sense that can be made formal,
“almost all” languages are undecidable!

Exercise 80 Use diagonalization to show that the set of all languages ℒ is uncountable, and formalize and rigor-
ously prove the above claims.

We leave the formalization of these countability arguments as an exercise, and instead give a direct diagonalization-

9.3. The Existence of an Undecidable Language 97

Foundations of Computer Science, Release 0.5

based proof that there is an undecidable language. For concreteness, we work with machines and languages having the
input alphabet Σ = {0, 1}, but all the arguments straightforwardly generalize to any finite alphabet Σ.

To set up the proof, we first show that the set of input strings, and the set of Turing machines, are both countable.

Lemma 81 The (infinite) set {0, 1}* of binary strings is countable.

Proof 82 We can enumerate the binary strings by length, as follows:

{0, 1}* = {𝜀, 0, 1, 00, 01, 10, 11, 000, 001, . . .} .

This works because there are only finitely many strings of any fixed finite length (one string of length zero, two
strings of length one, four strings of length two, etc.), and each string in {0, 1}* has some finite length, so it will
eventually appear in the enumeration. □

Lemma 83 The (infinite) set ℳ of Turing machines is countable.

Proof 84 The key observation is that any Turing machine 𝑀 has a finite description, and hence can be encoded
as a (finite) binary string ⟨𝑀⟩ ∈ Σ* in some unambiguous way. To see this, notice that all the components of the
seven-tuple are finite: the alphabets Σ,Γ, the set of states 𝑄 and the special states 𝑞start, 𝑞acc, 𝑞rej, and the transition
function 𝛿. In particular, 𝛿 has a finite domain and codomain, so we can encode its list of input/output pairs as a
(finite) binary string.

Since there is an injective encoding function from ℳ to Σ*, and Σ* is countable by Lemma 81, ℳ is countable
as well. (See Exercise 70 to justify this rigorously.) □

We can now state and prove our main theorem.

Theorem 85 There is an undecidable language 𝐴 ⊆ Σ* = {0, 1}*.

Proof 86 We proceed by diagonalization (but directly, not by contradiction). As shown above, both Σ* =
{𝑥0, 𝑥1, 𝑥2, . . .} and the set of Turing machines ℳ = {𝑀0,𝑀1,𝑀2, . . .} are countable. So, we can imagine
an infinite, two-dimensional table with machines enumerated along the rows, and input strings along the columns:

9.3. The Existence of an Undecidable Language 98

Foundations of Computer Science, Release 0.5

𝜀 0 1 00 01 10 11 000 ⋯

𝑀! yes no yes yes no no no no

𝑀" yes yes no no no no no yes

𝑀# yes no no no yes no no yes

𝑀$ yes no yes no yes yes no no

𝑀% yes no yes no yes no no yes

𝑀& yes yes no no no no yes yes

𝑀' no yes no no yes no no no

𝑀(yes no no yes no yes no yes

⋮ ⋱

The (𝑖, 𝑗)th entry of this table indicates whether machine 𝑀𝑖 accepts input string 𝑥𝑗 . For example, we have here
that 𝑀0 accepts the string 𝑥0 = 𝜀 but does not accept the string 𝑥1 = 0, whereas 𝑀1 accepts both of those strings
but does not accept the string 𝑥2 = 1.

Now consider the diagonal of this table, which indicates whether machine 𝑀𝑖 accepts input string 𝑥𝑖, for each
𝑖 ∈ N. By definition, 𝑥𝑖 ∈ 𝐿(𝑀𝑖) if and only if the 𝑖th diagonal entry in the table is “yes”.

We now construct the language 𝐴 ⊆ Σ* to correspond to the “negated diagonal.” Specifically, for each string 𝑥𝑖,
we include it in 𝐴 if and only if 𝑀𝑖 does not accept 𝑥𝑖. Formally:

𝐴 = {𝑥𝑖 : 𝑥𝑖 /∈ 𝐿(𝑀𝑖), for 𝑖 ∈ N} .

𝐴 1 00 10 11 	⋯

By the above definition, for every 𝑖 ∈ N, we have that𝑥𝑖 ∈ 𝐴 if and only if𝑥𝑖 /∈ 𝐿(𝑀𝑖), so𝐴 ̸= 𝐿(𝑀𝑖). Therefore,
no machine 𝑀𝑖 in the enumeration decides 𝐴. Since 𝑀0,𝑀1,𝑀2, . . . enumerates every Turing machine, we
conclude that no machine decides 𝐴—it is undecidable.

(In fact, we have shown even more: since 𝐴 ̸= 𝐿(𝑀𝑖) for all 𝑖 ∈ N, there is no Turing machine that even
recognizes 𝐴, i.e., 𝐴 is unrecognizable. See Recognizability (page 123) for details.) □

The above proof establishes the existence of an undecidable language, but the language is rather contrived: it is con-
structed based on the enumerations of machines and inputs, and the behaviors of these machines on these inputs. The
associated decision problem does not seem like a “natural” problem we would care to solve in the first place, so perhaps
it isn’t so important that this problem is unsolvable.

In the upcoming sections, we will prove that many quite natural and practically important languages of interest are also
undecidable.

9.3. The Existence of an Undecidable Language 99

CHAPTER

TEN

“NATURAL” UNDECIDABLE PROBLEMS

I don’t care to belong to any club that will have me as a member. — Groucho Marx

Suppose that while visiting a new town, you come across a barber shop with the following sign in its window:

Barber 𝐵 is the best barber in town! 𝐵 cuts the hair of all those people in town, and only those, who do
not cut their own hair.

In other words, for any person 𝑋 in the town, there are two possibilities:

1. If 𝑋 cuts their own hair, then 𝐵 does not cut 𝑋’s hair.

2. If 𝑋 does not cut their own hair, then 𝐵 cuts 𝑋’s hair.

Assuming that the sign is true, we now ask the question: does 𝐵 cut their own hair? Since the barber is a person in the
town, we can substitute 𝑋 = 𝐵 into the two cases above, and get:

1. If 𝐵 cuts their own hair, then 𝐵 does not cut 𝐵’s hair.

2. If 𝐵 does not cut their own hair, then 𝐵 cuts 𝐵’s hair.

Both cases result in a contradiction! Thus, our assumption that the sign is true must be incorrect. (Or perhaps the
barber is not a person. . .)

This is known as the barber paradox. While its current form may seem like an idle amusement, in what follows
we will see that we can devise an analogous paradox for Turing machines, which will yield a “natural” undecidable
language. Then, we will use this undecidable language to show that there are many other natural and practically
important undecidable languages.

10.1 Code as Input

Recall from the proof of Lemma 83 that any Turing machine itself can be unambiguously represented as a binary string,
by encoding the (finite) components of its seven-tuple. We refer to this string encoding of a machine as its code, and
denote it as usual with angle brackets: ⟨𝑀⟩ is the code of machine 𝑀 .

Next, because the code of a machine is just a binary string, we can contemplate the following fascinating idea: we can
give the code of one machine as input to another machine! We can even give a program its own code as input.

There are many useful examples of this kind of pattern in everyday computing:

• An interpreter is a program that takes the code of some arbitrary program as input, and runs it.

• A compiler is a program that takes the code of some arbitrary program as input, and converts it to some other
form (e.g., machine-level instructions).

• A debugger is a program that takes the code of some arbitrary program as input, and runs it interactively under
the control of the user (e.g., step by step, or until certain conditions on the state of the program are met, etc.).

100

Foundations of Computer Science, Release 0.5

• An emulator is a program that takes the code of some arbitrary program written for a certain kind of hardware
device, and runs it on some other hardware device.

Here are some examples of how in practice, a C++ program could take its own code as input:

$ g++ prog.cpp -o prog.exe # compile the program into an executable
$./prog.exe prog.cpp # pass the code filename as a command-line argument
$./prog.exe < prog.cpp # pass the code via standard input
$./prog.exe "`cat prog.cpp`" # pass the code as a single command-line argument

In the above example, we first passed the code prog.cpp as the input to the g++ compiler. The g++ compiler itself is
an example of a self-hosting22 program: it is compiled by passing its own code to itself! A quine23 is an analogous
concept of a program that outputs its own code.

10.2 The Barber Language

With the concept of code as input in hand, we now devise a computational analog of the barber paradox. The analogy
arises from the following correspondences:

• instead of people, we consider Turing machines;

• instead of the hair of a person, we consider the code of a TM;

• instead of cutting the hair of a person, we consider accepting the code of a TM.

The advertisement in the barber shop then becomes:

Turing machine 𝐵 is the best TM! It accepts the code of all Turing machines, and only those, that do not
accept their own code.

More formally, the above says that the language 𝐿(𝐵) of machine 𝐵 is the following “barber” language:

𝐿BARBER = {⟨𝑀⟩ : 𝑀 is a TM and 𝑀(⟨𝑀⟩) does not accept} .

This is because 𝐵 accepts the code ⟨𝑀⟩ of a Turing machine 𝑀 if and only if 𝑀 does not accept its own code ⟨𝑀⟩.
Does such a Turing machine 𝐵 exist? The following theorem proves that is does not, because its very existence would
be a contradiction.

Theorem 87 The language 𝐿BARBER is undecidable (and even unrecognizable), i.e., no Turing machine decides
(or even recognizes) 𝐿BARBER.

Proof 88 Assume for the sake of contradiction that there is a Turing machine 𝐵 for which 𝐿(𝐵) = 𝐿BARBER.
Just like we asked whether the barber cuts their own hair, let us now ask the analogous question: does 𝐵 accept
its own code, i.e., does 𝐵(⟨𝐵⟩) accept? (Since 𝐵 is a Turing machine, it has some code ⟨𝐵⟩, and the behavior of
𝐵(⟨𝐵⟩) is well defined: it either accepts or it does not.)

1. If 𝐵(⟨𝐵⟩) accepts, then ⟨𝐵⟩ /∈ 𝐿BARBER by definition, so by our assumption, 𝐵(⟨𝐵⟩) does not accept.

2. If 𝐵(⟨𝐵⟩) does not accept, then ⟨𝐵⟩ ∈ 𝐿BARBER by definition, so by our assumption, 𝐵(⟨𝐵⟩) accepts.

Again, both cases result in a contradiction. Thus, our initial assumption was incorrect: no Turing machine 𝐵 has
the property that 𝐿(𝐵) = 𝐿BARBER, i.e., no Turing machine decides 𝐿BARBER—it is undecidable. In fact, we have
proved even more: that no Turing machine even recognizes 𝐿BARBER. □

22 https://en.wikipedia.org/wiki/Self-hosting_(compilers)
23 https://en.wikipedia.org/wiki/Quine_(computing)

10.2. The Barber Language 101

https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Quine_(computing)

Foundations of Computer Science, Release 0.5

It is interesting to observe that the definition of 𝐿BARBER and proof of Theorem 87 can also be seen as a kind of
diagonalization. Since the set of TMs is countable by Lemma 83, there is an enumeration 𝑀0,𝑀1,𝑀2, . . . of all
Turing machines. Consider a two-dimensional infinite “table” with this enumeration along the rows, and the codes
⟨𝑀0⟩, ⟨𝑀1⟩, ⟨𝑀2⟩, . . . along the columns. Entry (𝑖, 𝑗) of the table corresponds to whether 𝑀𝑖(⟨𝑀𝑗⟩) accepts. The
language corresponding to the “negated” diagonal, which is therefore not decided (or even recognized) by any TM, con-
sists of exactly those strings ⟨𝑀𝑖⟩ for which 𝑀𝑖(⟨𝑀𝑖⟩) does not accept—and this is exactly the definition of 𝐿BARBER!

The undecidable language 𝐿BARBER is fairly “natural”, because it corresponds to the decision problem of determining
whether a given program accepts its own code. (As we have seen, running a program on its own code is a natural and
potentially useful operation.) Next, we will build upon the undecidability of 𝐿BARBER to prove the undecidability of
other, arguably even more “natural” languages that are concerned with the behavior of given programs on inputs that
are typically not their own code.

10.3 The Acceptance Language and Simulation

We now define the language that corresponds to the following decision problem: given a Turing machine and a string,
does the machine accept the string?

Definition 89 (Acceptance Language for TMs) The “acceptance” language for Turing machines is defined as

𝐿ACC = {(⟨𝑀⟩, 𝑥) : 𝑀 is a Turing machine and 𝑀(𝑥) accepts} .

Unlike the undecidable languages considered above, this language is recognizable by a certain Turing machine 𝑈 , as
we now explain. Given input (⟨𝑀⟩, 𝑥), machine 𝑈 examines the code of the input machine 𝑀 and “simulates” running
whatever steps that machine would take when run on the input string 𝑥, finally outputting the same decision (if it ever
halts).

An interpreter is a real-world incarnation of this concept. For example, we can provide the source code of a Python
program to the Python interpreter, which will read and execute the code:

$ python prog.py

Similarly, a general-purpose CPU can be seen as an interpreter: it is a fixed “program” (in this case, hardware) that,
when given the source code (in this case, machine-level instructions) of some program, runs that program. An emulator
can also been seen as a kind of interpreter.

A Turing machine 𝑈 that is an interpreter of this kind is known as a universal Turing machine. Observe that 𝑈(⟨𝑀⟩, 𝑥)
has the following behavior:

• If 𝑀(𝑥) accepts, then 𝑈(⟨𝑀⟩, 𝑥) accepts.

• If 𝑀(𝑥) rejects, then 𝑈(⟨𝑀⟩, 𝑥) rejects.

• If 𝑀(𝑥) loops, then 𝑈(⟨𝑀⟩, 𝑥) loops.

Therefore, 𝑈 recognizes 𝐿ACC (i.e., 𝐿(𝑈) = 𝐿ACC), because it accepts every (⟨𝑀⟩, 𝑥) ∈ 𝐿ACC and rejects or loops on
every (⟨𝑀⟩, 𝑥) /∈ 𝐿ACC. (See Definition 62.)

There are many examples of universal Turing machines in the literature, and their descriptions can be found elsewhere.
For our purposes, what is important is the existence of universal machines, not the details of their implementation.

Simulation Versus Subroutines

The idea of a machine 𝑈 simulating the execution of a machine 𝑀 whose code ⟨𝑀⟩ is provided as input to 𝑈 is
quite different from what we did in the proof of Lemma 65. In that proof, 𝑀1,𝑀2 are fixed machines that exist by

10.3. The Acceptance Language and Simulation 102

Foundations of Computer Science, Release 0.5

hypothesis, and the constructed machine 𝑀 has 𝑀1,𝑀2 “built in” to it as “subroutines”. For Turing machines, this
can be done by including the states and transitions of the subroutine machine as part of the calling machine, with
appropriate transitions between certain states of the two machines to represent the subroutine call and return value.

In practice, the analogous concept is using a library of pre-existing code. For example, in C++, we can use the
#include directive, like so:
#include "M1.hpp" // include code of M1
#include "M2.hpp" // include code of M2

int M(string x) {
M1(x); // invoke M1
...

}

Now that we have shown that the language 𝐿ACC is recognizable, the natural next question is whether it is decidable.
For it to be decidable, there must exist some Turing machine 𝐶 that has the following behavior on input (⟨𝑀⟩, 𝑥):

• If 𝑀 accepts 𝑥, then 𝐶(⟨𝑀⟩, 𝑥) accepts.

• If 𝑀 does not accept 𝑥 (i.e., it either rejects or loops), then 𝐶(⟨𝑀⟩, 𝑥) rejects.

Observe that a universal Turing machine𝑈 does not meet these requirements, because if𝑀 loops on 𝑥, then𝑈(⟨𝑀⟩, 𝑥)
loops; it does not reject. Thus, even though𝐿(𝑈) recognizes𝐿ACC, it loops on some inputs and therefore does not decide
𝐿ACC (or any other language). In fact, it turns out that no Turing machine decides 𝐿ACC.

Theorem 90 The language 𝐿ACC is undecidable.

Proof 91 Assume for the sake of contradiction that there exists a Turing machine 𝐶 that decides the language
𝐿ACC. Below we use 𝐶 to define another Turing machine 𝐵 that decides the “barber” language 𝐿BARBER. Since
we previously showed that 𝐿BARBER is undecidable (see Theorem 87), this is a contradiction, and our original
assumption was false. Hence no Turing machine decides 𝐿ACC, i.e., 𝐿ACC is undecidable.

We wish to define a Turing machine 𝐵 that, when given the code ⟨𝑀⟩ of some arbitrary machine 𝑀 as input,
determines whether 𝑀(⟨𝑀⟩) accepts. The key idea is that 𝐵 can use the machine 𝐶 to determine this, because
𝐶 decides 𝐿ACC by assumption: given (⟨𝑀 ′⟩, 𝑥) for any Turing machine 𝑀 ′ and any string 𝑥 as input, 𝐶 will
correctly determine whether𝑀 ′(𝑥) accepts. So, for𝐵 to achieve its goal, it will invoke𝐶 on the machine𝑀 ′ = 𝑀
and input string 𝑥 = ⟨𝑀⟩. The precise definition of 𝐵 is as follows:

function 𝐵(⟨𝑀⟩)
if 𝐶(⟨𝑀⟩, ⟨𝑀⟩) accepts then reject
accept

We analyze the behavior of 𝐵 on an arbitrary input string ⟨𝑀⟩ as follows:

• If ⟨𝑀⟩ ∈ 𝐿BARBER, then 𝑀(⟨𝑀⟩) does not accept by definition of 𝐿BARBER, so (⟨𝑀⟩, ⟨𝑀⟩) /∈ 𝐿ACC by
definition of 𝐿ACC, so 𝐶(⟨𝑀⟩, ⟨𝑀⟩) rejects because 𝐶 decides 𝐿ACC, so 𝐵(⟨𝑀⟩) accepts by construction
of 𝐵, as needed.

• Conversely, if ⟨𝑀⟩ /∈ 𝐿BARBER, then 𝑀(⟨𝑀⟩) accepts by definition of 𝐿BARBER, so (⟨𝑀⟩, ⟨𝑀⟩) ∈ 𝐿ACC by
definition of 𝐿ACC, so 𝐶(⟨𝑀⟩, ⟨𝑀⟩) accepts because 𝐶 decides 𝐿ACC, so 𝐵(⟨𝑀⟩) rejects by construction
of 𝐵, as needed.

Therefore, by Definition 61, 𝐵 decides 𝐿BARBER, as claimed.

Alternatively, we can analyze 𝐵 using the equivalent form of Definition 61, as follows. First, because 𝐵 simply
calls 𝐶 as a subroutine and outputs the opposite answer, and 𝐶 halts on any input (because 𝐶 is a decider by

10.3. The Acceptance Language and Simulation 103

Foundations of Computer Science, Release 0.5

hypothesis), 𝐵 also halts on any input. Next, by definitions of the languages and assumption on 𝐶,

⟨𝑀⟩ ∈ 𝐿BARBER ⇐⇒ 𝑀(⟨𝑀⟩) does not accept
⇐⇒ (⟨𝑀⟩, ⟨𝑀⟩) /∈ 𝐿ACC

⇐⇒ 𝐶(⟨𝑀⟩, ⟨𝑀⟩) rejects
⇐⇒ 𝐵(⟨𝑀⟩) accepts ,

as required. □

Observe that in the proof of Theorem 90, we showed that the (previously established) undecidability of𝐿BARBER implies
the undecidability of the new language 𝐿ACC. We did this by contradiction, or from another perspective, by establishing
the contrapositive statement: that if 𝐿ACC is decidable, then 𝐿BARBER is decidable.

We proved this by using any hypothetical Turing machine 𝐶 that decides 𝐿ACC as a subroutine to construct a Turing
machine 𝐵 that decides 𝐿BARBER. Importantly, 𝐵 did not simulate its input machine 𝑀 on the code ⟨𝑀⟩, because
doing this might cause 𝐵 to loop. Instead, 𝐵 “asked” 𝐶 whether 𝑀(⟨𝑀⟩) accepts, and negated the answer. We do not
know how 𝐶 determines its answer, but this does not matter: 𝐶 decides 𝐿ACC by hypothesis, so it halts and returns the
correct answer on any input it is given.

A transformation that uses a hypothetical decider for one language as a subroutine to construct a decider for another
language is called a Turing reduction. This is a very powerful and general approach for relating the (un)decidability of
one language to another. More generally, reductions of various kinds are one of the most important and central ideas in
theoretical computer science. See the next section and Turing Reductions (page 106) for further examples and details.

10.4 The Halting Problem

Recall that the only difference between a universal Turing machine 𝑈 (which we know exists) and a decider for 𝐿ACC
(which we proved does not exist) is how they behave on inputs (⟨𝑀⟩, 𝑥) where 𝑀 loops on 𝑥: while 𝑈(⟨𝑀⟩, 𝑥) also
loops, a decider for 𝐿ACC must reject such (⟨𝑀⟩, 𝑥). On all other inputs, 𝑈 halts and returns the correct answer. So,
if we could just first determine whether 𝑀(𝑥) halts, we could decide 𝐿ACC. The decision problem of determining
whether a given machine 𝑀 halts on a given input 𝑥 is called the halting problem. Since a decider for the halting
problem would yield a decider for 𝐿ACC, this implies that the halting problem must be undecidable as well!

We now formalize this reasoning. We define 𝐿HALT, the language corresponding to the halting problem, as follows.

Definition 92 (Halting Language for TMs) The “halting” language for Turing machines is defined as

𝐿HALT = {(⟨𝑀⟩, 𝑥) : 𝑀 is a Turing machine and 𝑀(𝑥) halts} .

So:

• If 𝑀(𝑥) accepts, then (⟨𝑀⟩, 𝑥) ∈ 𝐿HALT.

• If 𝑀(𝑥) rejects, then (⟨𝑀⟩, 𝑥) ∈ 𝐿HALT.

• If 𝑀(𝑥) loops, then (⟨𝑀⟩, 𝑥) /∈ 𝐿HALT.

Theorem 93 The language 𝐿HALT is undecidable.

Proof 94 Assume for the sake of contradiction that there exists a Turing machine 𝐻 that decides the language
𝐿HALT. Below we use 𝐻 to define another Turing machine 𝐶 that decides 𝐿ACC. Since we previously showed that
𝐿ACC is undecidable (see Theorem 90), this is a contradiction, and our original assumption was false. Hence no
Turing machine decides 𝐿HALT, i.e., 𝐿HALT is undecidable.

We wish to define a Turing machine𝐶 that, when given input (⟨𝑀⟩, 𝑥) for some arbitrary machine𝑀 and arbitrary

10.4. The Halting Problem 104

Foundations of Computer Science, Release 0.5

string 𝑥, determines whether 𝑀(𝑥) accepts. As discussed above, 𝐶 could simulate 𝑀(𝑥), as in a universal Turing
machine. However, this might loop, which is the only case that 𝐶 must avoid. The key idea is that 𝐶 can first use
𝐻 to determine whether 𝑀(𝑥) loops, and then act appropriately. The precise definition of 𝐶 is as follows:

function 𝐶(⟨𝑀⟩, 𝑥)
if 𝐻(⟨𝑀⟩, 𝑥) rejects then reject
simulate 𝑀(𝑥) and output the same result

We analyze the behavior of 𝐶 on an arbitrary input string (⟨𝑀⟩, 𝑥) as follows:

• If (⟨𝑀⟩, 𝑥) ∈ 𝐿ACC, then𝑀(𝑥) accepts and thus halts, so (⟨𝑀⟩, 𝑥) ∈ 𝐿HALT and thus the call to𝐻(⟨𝑀⟩, 𝑥)
accepts, so 𝐶 reaches its second line, where the simulation of 𝑀(𝑥) accepts, so 𝐶 accepts, as needed.

• If (⟨𝑀⟩, 𝑥) /∈ 𝐿ACC, then 𝑀(𝑥) either rejects or loops.

– If it loops, then (⟨𝑀⟩, 𝑥) /∈ 𝐿HALT so the call to 𝐻(⟨𝑀⟩, 𝑥) rejects, and 𝐶 rejects, as needed.

– If it rejects, then (⟨𝑀⟩, 𝑥) ∈ 𝐿HALT so the call to 𝐻(⟨𝑀⟩, 𝑥) accepts, so 𝐶 reaches its second line,
where the simulation of 𝑀(𝑥) rejects, so 𝐶 rejects, again as needed.

Therefore, by Definition 61, 𝐶 decides 𝐿ACC, as claimed. □

We have proved that 𝐿HALT is undecidable. This is quite unfortunate, since the halting problem is a fundamental
problem in software and hardware design. One of the most basic questions we can ask about a program’s correctness
is whether it halts on all inputs. Since 𝐿HALT is undecidable, there is no general method to answer this question even
for a single input, much less all inputs.

Exercise 95 Construct an elementary proof that 𝐿HALT is undecidable by following the steps below. This was the
first “existence” proof for an undecidable language, and it is due to Alan Turing.

a) Suppose there exists a Turing Machine 𝐻 that decides 𝐿HALT. Using 𝐻 , design a Turing Machine 𝑀 for
which 𝑀(⟨𝑇 ⟩) halts if and only if 𝐻(⟨𝑇 ⟩, ⟨𝑇 ⟩) rejects, for any Turing machine 𝑇 .

b) Devise an input 𝑥 for 𝑀 that yields a contradiction, and conclude that 𝐻 does not exist, i.e., 𝐿HALT is
undecidable.

10.4. The Halting Problem 105

CHAPTER

ELEVEN

TURING REDUCTIONS

Observe that the above proofs of the undecidability of the acceptance language 𝐿ACC (Theorem 90) and the halting
language 𝐿HALT (Theorem 93) follow a common pattern for showing that some language 𝐵 is undecidable:

1. First assume for the sake of contradiction that 𝐵 is decidable, i.e., there is some Turing machine 𝑀𝐵 that decides
it.

2. Use 𝑀𝐵 as a subroutine to construct a decider 𝑀𝐴 for some known undecidable language 𝐴.

3. Since 𝑀𝐴 decides the undecidable language 𝐴, we have reached a contradiction. So the original assumption that
𝐵 is decidable must be false, hence 𝐵 is undecidable.

This kind of pattern is known as a reduction from language 𝐴 to language 𝐵. That is, we reduce the task of solving 𝐴
to that of solving 𝐵, so that if 𝐵 is solvable, then 𝐴 is solvable as well. We next formalize and abstract out this pattern,
and apply it to show the undecidability of more languages.

Libraries of Code

In practice, almost all programs make use of pre-existing components, often called libraries, to accomplish their
intended tasks. As an example, consider a “hello world” program in C:

#include <stdio.h>

int main() {
printf("Hello world!");
return 0;

}

This program uses the standard stdio.h library, invoking the printf() function from that library. Observe that we
do not need to know how printf() works to write this program—we need only know what it does (i.e., its input-
output behavior). As long as the function does what it is claimed to do, the above program will work correctly—even
if the implementation of printf() were to change to a completely different (but still correct) one. In other words,
the program merely treats printf() as a “black box” that prints its argument.

From a certain perspective, the above program reduces the task of printing the specific string Hello world! to that
of printing an arbitrary string. Since the latter task is accomplished by the printf() function, we can use it rather
trivially to accomplish the former task.

Definition 96 (Turing Reduction) A Turing reduction from a language 𝐴 to a language 𝐵 is a Turing machine
that decides 𝐴 given access to an oracle (or “black box”) that decides 𝐵. If such a reduction exists, we say that 𝐴
Turing-reduces to 𝐵, and write 𝐴 ≤𝑇 𝐵.24

24 As discussed more below, the “direction” of the reduction is very important. Upon first exposure (or even after many years of exposure)
to this concept, the terminology “𝐴 reduces to 𝐵” may appear to be in conflict with the notation 𝐴 ≤𝑇 𝐵. The phrase “𝐴 reduces to 𝐵”

106

Foundations of Computer Science, Release 0.5

refers to the problems’ “solvability”, and essentially means that solving 𝐴 “comes down to” solving 𝐵. For example, addition of multi-digit
numbers “reduces to” addition of single digits, because we can accomplish the former via the latter. By contrast, the notation 𝐴 ≤𝑇 𝐵 refers
to the problems’ intrinsic “hardness”, and essentially says that 𝐴 is “no harder to solve” than 𝐵 is (ignoring efficiency).

An oracle (or “black box”) that decides a language is some abstract entity that, whenever it is invoked (or queried) on
any string, it correctly identifies whether that string is in the language—it accepts if so, and rejects if not. Importantly,
it does not loop on any input—a useful property that reductions often exploit.

We can think of an oracle as a subroutine or “library function” (see the sidebar (page 106)) that correctly performs its
stated task on any input. However, it is not necessarily—and in many advanced settings, is not—a Turing machine.
Oracles can potentially perform tasks that no Turing machine can do, like decide undecidable problems.

A reduction may query its oracle any (finite) number of times, on any string(s) of its choice—including none at all.
However, the reduction may not “look inside” the oracle or rely in any way on how it works internally—it can use the
oracle only as a “black box” subroutine.

	𝑀! 	𝑀"
𝑤 𝑤’

accept/
reject

accept/
reject

The notation 𝐴 ≤𝑇 𝐵 reflects the intuition that, ignoring efficiency, problem 𝐴 is “no harder to solve” than problem 𝐵
is: if we can somehow solve 𝐵, then we can also solve 𝐴. However, we emphasize that the statement 𝐴 ≤𝑇 𝐵 does not
require that 𝐵 is actually solvable by an algorithm. It is merely a conditional statement that, if we have access to some
hypothetical solver for 𝐵 (as an oracle), then we can use it to solve 𝐴 by an algorithm. Consistent with this intuition,
one can show that ≤𝑇 is transitive:

Exercise 97 Formally prove that if 𝐴 ≤𝑇 𝐵 and 𝐵 ≤𝑇 𝐶, then 𝐴 ≤𝑇 𝐶.

We now prove the first formal implication of having a Turing reduction, which conforms to the above intuition.

Lemma 98 Suppose that 𝐴 ≤𝑇 𝐵. If 𝐵 is decidable, then 𝐴 is also decidable.

Proof 99 Since 𝐴 ≤𝑇 𝐵, by Definition 96 there is a Turing machine 𝑀𝐴 that decides 𝐴 when given access to an
oracle that decides 𝐵. Since 𝐵 is decidable, there is a Turing machine 𝑀𝐵 that decides 𝐵. Thus, in the reduction
𝑀𝐴, we can implement its oracle using (the code of) 𝑀𝐵 . This results in an ordinary Turing machine that decides
𝐴 (without relying on any oracle), so 𝐴 is indeed decidable. □

The following important corollary is merely the contrapositive of Lemma 98:25

Lemma 100 Suppose that 𝐴 ≤𝑇 𝐵. If 𝐴 is undecidable, then 𝐵 is also undecidable.

Lemma 100 is a powerful tool for proving that a language 𝐵 is undecidable: it suffices to identify some other language
𝐴 that is already known to be undecidable, and then prove that 𝐴 ≤𝑇 𝐵. In particular, we do not need to set up and
repeat all the surrounding “boilerplate” structure of a proof by contradiction. However, it is critical that we establish
the reduction in the proper “direction”! That is, we must show how to decide 𝐴 using an oracle for 𝐵, not the other
way around.

Observe that our proofs of Theorem 90 and Theorem 93 above actually showed that 𝐿BARBER ≤𝑇 𝐿ACC and 𝐿ACC ≤𝑇

𝐿HALT, respectively. This is because we constructed a Turing machine 𝐵 that decides 𝐿BARBER using any hypothetical
25 We can also prove this by contradiction, since contraposition and contradiction are closely related. We are given that 𝐴 ≤𝑇 𝐵 and that 𝐴 is

undecidable. Suppose for the purposes of contradiction that 𝐵 is decidable. Then by Lemma 98, 𝐴 is also decidable, which contradicts what was
given. So, our assumption about 𝐵 is false, i.e., 𝐵 is undecidable.

107

Foundations of Computer Science, Release 0.5

decider 𝐶 for 𝐿ACC as an oracle (i.e., a black-box subroutine); similarly, we constructed a Turing machine 𝐶 that
decides 𝐿ACC using any hypothetical decider 𝐻 for 𝐿HALT as an oracle.

Given that 𝐴 ≤𝑇 𝐵, there are four possibilities for the (un)decidability of 𝐴 or 𝐵, but only two of them imply anything
about the (un)decidability of the other language:

Hypothesis Implies
𝐴 is decidable nothing
𝐴 is undecidable 𝐵 is undecidable
𝐵 is decidable 𝐴 is decidable
𝐵 is undecidable nothing

In general, the other two possibilities don’t imply anything about the decidability of the other language. In fact, we can
show the following:

Exercise 101 Prove that, if𝐴 is decidable, then𝐴 ≤𝑇 𝐵 for any language𝐵, regardless of whether𝐵 is decidable
or not. (Hint: a reduction is not required to use its oracle.)

The fourth case, where 𝐵 is undecidable, is more subtle. It is not the case that 𝐴 ≤𝑇 𝐵 for any language 𝐴. In fact,
there is a hierarchy of “degrees” of undecidable languages26, and there are even pairs of “incomparable” undecidable
languages27 𝐴,𝐵 for which neither 𝐴 ≤𝑇 𝐵 nor 𝐵 ≤𝑇 𝐴 holds. These topics are beyond the scope of this text.

11.1 The Halts-on-Empty Problem

We saw previously that the halting-problem language 𝐿HALT is undecidable. In this section we show that a more
restricted form of this language is also undecidable, via a Turing reduction that employs a very useful “hard-coding”
technique. The restricted language corresponds to the decision problem of determining whether a given machine halts
on the empty-string input.

Definition 102 (Halts-on-𝜀 Language for TMs) The “halts on the empty string” language for TMs is defined as

𝐿𝜀-HALT = {⟨𝑀⟩ : 𝑀 is a Turing machine and 𝑀(𝜀) halts} .

It is not too hard to see that 𝐿𝜀-HALT ≤𝑇 𝐿HALT, i.e., given access to an oracle 𝐻 that decides 𝐿HALT, there is a Turing
machine 𝐸 that decides 𝐿𝜀-HALT:

function 𝐸(⟨𝑀⟩)
return 𝐻(⟨𝑀⟩, 𝜀)

(We leave the routine analysis as an exercise.) However, as we can see from the table above, this implies nothing about
the decidability of 𝐿𝜀-HALT, because 𝐿HALT is undecidable. Instead, to show that 𝐿𝜀-HALT is undecidable, we should
Turing-reduce from some undecidable language 𝐴 to 𝐿𝜀-HALT, i.e., we should prove that 𝐴 ≤𝑇 𝐿𝜀-HALT.

Below we formally prove that 𝐿HALT ≤𝑇 𝐿𝜀-HALT, after discussing the key issues here first. Let 𝐸 be an oracle that
decides 𝐿𝜀-HALT, i.e.:

• 𝐸 halts on any input, and

• 𝑀 ′(𝜀) halts if and only if 𝐸(⟨𝑀 ′⟩) accepts, for any Turing machine 𝑀 ′.

(See the equivalent form of Definition 61, which is more convenient for the present treatment.)
26 https://en.wikipedia.org/wiki/Turing_degree
27 https://en.wikipedia.org/wiki/Turing_degree#Order_properties

11.1. The Halts-on-Empty Problem 108

https://en.wikipedia.org/wiki/Turing_degree
https://en.wikipedia.org/wiki/Turing_degree#Order_properties
https://en.wikipedia.org/wiki/Turing_degree#Order_properties

Foundations of Computer Science, Release 0.5

To show that 𝐿HALT ≤𝑇 𝐿𝜀-HALT, we need to construct a reduction (a Turing machine) 𝐻 that decides 𝐿HALT given
access to the oracle 𝐸. Specifically, we need it to be the case that:

• 𝐻 halts on any input, and

• 𝑀(𝑥) halts if and only if 𝐻(⟨𝑀⟩, 𝑥) accepts, for any Turing machine 𝑀 and string 𝑥.

Hence, we need to design the reduction 𝐻 to work for an input pair—a machine 𝑀 and a string 𝑥—even though its
oracle 𝐸 takes only one input—a machine 𝑀 ′. So, we wish to somehow transform the original 𝑀 and 𝑥 into just a
machine 𝑀 ′ on which to query 𝐸, so that 𝐸’s (correct) answer on 𝑀 ′ will reveal the correct answer for the original
inputs 𝑀 and 𝑥.

A very useful strategy in this kind of circumstance is to have the reduction “hard-code” the original inputs into the
code of a related new machine that the oracle can properly handle. In the present case, the reduction will construct
the code for a new program 𝑀 ′ that ignores its own input and simply runs 𝑀 on 𝑥. Importantly, the code for this 𝑀 ′

can be constructed from the code for 𝑀 and 𝑥 simply by “syntactic” processing, not running any of this code (see
the sidebar (page 109)). By construction, 𝑀 ′ halts on 𝜀 (or any other string) if and only if 𝑀 halts on 𝑥. Because 𝐸
correctly determines whether the former is the case by hypothesis, it also implicitly reveals whether the latter is the
case—which is exactly what the reduction needs to determine. We now proceed more formally.

Theorem 103 We have that 𝐿HALT ≤𝑇 𝐿𝜀-HALT, so 𝐿𝜀-HALT is undecidable.

Proof 104 Let 𝐸 be an oracle that decides 𝐿𝜀-HALT, which has the properties stated above. We claim that the
following Turing machine 𝐻 decides 𝐿HALT given access to 𝐸:

function 𝐻(⟨𝑀⟩, 𝑥)
construct Turing machine “𝑀 ′(𝑤): ignore 𝑤 and return 𝑀(𝑥)”
return 𝐸(⟨𝑀 ′⟩)

The constructed machine 𝑀 ′ takes an input 𝑤, which it ignores, and then it just runs 𝑀 on the original input 𝑥.
So, we have the following key property: 𝑀(𝑥) halts if and only if 𝑀 ′(𝑤) halts on all 𝑤, and in particular, if and
only if 𝑀 ′(𝜀) halts.

We now analyze the behavior of 𝐻 on an arbitrary input (⟨𝑀⟩, 𝑥). First, 𝐻 halts on any input, because it just
constructs (but does not run!) the code for 𝑀 ′ from 𝑀 and 𝑥, and then invokes 𝐸, which halts by hypothesis.
Second, by the definition of 𝐿HALT, the key property above, the hypothesis on 𝐸, and the definition of 𝐻 ,

(⟨𝑀⟩, 𝑥) ∈ 𝐿HALT ⇐⇒ 𝑀(𝑥) halts
⇐⇒ 𝑀 ′(𝜀) halts
⇐⇒ 𝐸(⟨𝑀 ′⟩) accepts
⇐⇒ 𝐻(⟨𝑀⟩, 𝑥) accepts ,

as needed. So, by Definition 61, 𝐻 decides 𝐿HALT, as claimed. □

We stress that a very important point about the above proof of Theorem 103 is that the reduction 𝐻 merely constructs
𝑀 ′ and queries 𝐸 on it; 𝐻 does not run/simulate 𝑀 ′ or 𝑀 . This is important because 𝑀 ′ itself runs some arbitrary
input code 𝑀 that may loop on 𝑥, so we cannot “risk” running it in a machine that we want to decide some language.
Instead, 𝐻 queries 𝐸 on ⟨𝑀 ′⟩, which is “safe” because 𝐸 halts on any input, by hypothesis. Indeed, 𝐸 correctly
determines whether 𝑀 ′(𝜀) halts, which holds if and only if 𝑀(𝑥) halts, by construction of 𝑀 ′.

Constructing a Program in C++

Suppose that we have a C++ library for an interpreter 𝑈 . Then given the C++ code for a program 𝑀 and an input
string 𝑥, we can easily construct C++ code for a program that ignores its input and just runs 𝑀 on 𝑥. The full

11.1. The Halts-on-Empty Problem 109

Foundations of Computer Science, Release 0.5

definition of the reduction 𝐻 (which decides 𝐿HALT) given subroutine 𝐸 (an oracle that decides 𝐿𝜀-HALT) is as
follows:
int H(string M_code, string x) {
string Mp =

"#include \"U.hpp\"\n"
+ "int Mprime(string w) {\n"
+ " return U(\"" + M_code + "\", \"" + x + "\");\n"
+ "}";

return E(Mp);
}

We hardcode the inputs M_code and x as part of the code Mp for Mprime().28Since M_code is code in string format,
we cannot run it directly, but we can pass it to the interpreter U to simulate its execution on x.

11.2 More Undecidable Languages and Turing Reductions

Here we define a variety of other languages and prove them undecidable, using the reduction techniques introduced
above.

Example 105 Define

𝐿FOO = {⟨𝑀⟩ : 𝑀 is a Turing machine and 𝑓𝑜𝑜 ∈ 𝐿(𝑀)} .

We show that 𝐿ACC ≤𝑇 𝐿FOO, hence that 𝐿FOO is undecidable. In fact, the proof easily generalizes to work for
any fixed string in place of 𝑓𝑜𝑜, or even any fixed subset of strings.

Let 𝐹 be an oracle that decides 𝐿FOO, i.e.,

• 𝐹 halts on any input, and

• 𝑀(𝑓𝑜𝑜) accepts if and only if 𝐹 (⟨𝑀⟩) accepts.

We claim that the following Turing machine 𝐶 decides 𝐿ACC given access to oracle 𝐹 . (Interestingly, observe that
the code of 𝐶 is identical to that of the reduction 𝐻 from the proof of Theorem 103, though they are meant to
decide different languages, and their oracles are different.)

function 𝐶(⟨𝑀⟩, 𝑥)
construct Turing machine “𝑀 ′(𝑤): ignore 𝑤 and return 𝑀(𝑥)”
return 𝐹 (⟨𝑀 ′⟩)

The key property here is that 𝑀(𝑥) accepts if and only if 𝑀 ′(𝑓𝑜𝑜) accepts, i.e., 𝑓𝑜𝑜 ∈ 𝐿(𝑀 ′). Indeed, this is
true more generally for any fixed string or fixed subset of strings, not just 𝑓𝑜𝑜.

We analyze the behavior of 𝐶 on an arbitrary input (⟨𝑀⟩, 𝑥). First, 𝐶 halts on any input, because it just constructs
(the code for) a machine 𝑀 ′ from that of 𝑀 and 𝑥, and then invokes 𝐹 , which halts by hypothesis. Second, by

28 Technically, Since M_code and xmay contain newlines and other characters that are not allowed in a C++ string literal, we would need to either
process the strings to replace such characters with their respective escape sequences, or use raw string literalsPage 110, 29.

29 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2442.htm

11.2. More Undecidable Languages and Turing Reductions 110

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2442.htm

Foundations of Computer Science, Release 0.5

the definition of 𝐿ACC, the key property above, the hypothesis on 𝐹 , and the definition of 𝐶,

(⟨𝑀⟩, 𝑥) ∈ 𝐿ACC ⇐⇒ 𝑀(𝑥) accepts
⇐⇒ 𝑀 ′(𝑓𝑜𝑜) accepts
⇐⇒ 𝐹 (⟨𝑀 ′⟩) accepts
⇐⇒ 𝐶(⟨𝑀⟩, 𝑥) accepts ,

as needed. So, by Definition 61, 𝐶 decides 𝐿ACC, as claimed.

Example 106 Define

𝐿∅ = {⟨𝑀⟩ : 𝑀 is a Turing machine and 𝐿(𝑀) = ∅} .

In other words, 𝐿∅ is the set of (the codes of) machines that do not accept any input. This language corresponds
to the decision problem of determining whether a given program accepts some (unspecified) string.

We stress that 𝐿∅ is not the empty language ∅ = {}. The latter is the language that contains no strings, and it is
decidable because it is decided by the trivial Turing machine 𝑀reject that ignores its input and immediately rejects.
On the other hand, 𝐿∅ consists of (the codes of) infinitely many different machines. For example, (the codes of)
the following machines are all elements of 𝐿∅: the just-described machine 𝑀reject, a modified 𝑀reject that does
one operation before rejecting, the machine 𝑀loop that ignores its input and loops, the machine that rejects 𝜀 but
loops on every other string, etc.

We show that 𝐿ACC ≤𝑇 𝐿∅, hence 𝐿∅ is undecidable. The reduction is almost identical to the ones above, with
just a small tweak: the reduction negates the output of its oracle. Let 𝐸 be an oracle that decides 𝐿∅. We claim
that the following Turing machine 𝐶 decides 𝐿ACC given access to oracle 𝐸:

function 𝐶(⟨𝑀⟩, 𝑥)
construct Turing machine “𝑀 ′(𝑤): ignore 𝑤 and return 𝑀(𝑥)”
return the opposite of 𝐸(⟨𝑀 ′⟩)

Observe that if 𝑀(𝑥) accepts, then 𝐿(𝑀 ′) = Σ* ̸= ∅, whereas if 𝑀(𝑥) does not accept, then 𝐿(𝑀 ′) = ∅. So,
we have the key property that (⟨𝑀⟩, 𝑥) ∈ 𝐿ACC if and only if ⟨𝑀 ′⟩ /∈ 𝐿∅.

We analyze the behavior of 𝐶 on an arbitrary input (⟨𝑀⟩, 𝑥). First, 𝐶 halts by similar reasoning as in the prior
examples. Second, by the key property above, the hypothesis on 𝐸, and the definition of 𝐶,

(⟨𝑀⟩, 𝑥) ∈ 𝐿ACC ⇐⇒ 𝐿(𝑀 ′) ̸= ∅
⇐⇒ 𝐸(⟨𝑀 ′⟩) rejects
⇐⇒ 𝐶(⟨𝑀⟩, 𝑥) accepts .

So, by Definition 61, 𝐶 decides 𝐿ACC, as claimed.

Example 107 Define

𝐿EQ = {(⟨𝑀1⟩, ⟨𝑀2⟩) : 𝑀1,𝑀2 are Turing machines and 𝐿(𝑀1) = 𝐿(𝑀2)} .

This language corresponds to the decision problem of determining whether two given programs accept exactly
the same strings, i.e., whether they are “functionally identical” in terms of which strings they accept.

Since this language is concerned with the languages of two given machines, it is convenient to reduce from another
language that also involves the language a given machine, namely, 𝐿∅. We show that 𝐿∅ ≤𝑇 𝐿EQ, hence 𝐿EQ is
undecidable. Let 𝑄 be an oracle that decides 𝐿EQ, i.e.,

11.2. More Undecidable Languages and Turing Reductions 111

Foundations of Computer Science, Release 0.5

• 𝑄 halts on any input, and

• (⟨𝑀1⟩, ⟨𝑀2⟩) ∈ 𝐿EQ if and only if 𝑄(⟨𝑀1⟩, ⟨𝑀2⟩) accepts.

The challenge here is that, given (the code of) a machine 𝑀 (an instance of 𝐿∅), the reduction should transform it
into (the codes of) two machines 𝑀1 and 𝑀2, so that 𝑄’s (correct) answer about whether 𝐿(𝑀1) = 𝐿(𝑀2) will
reveal whether 𝐿(𝑀) = ∅. The key idea is for the reduction to let 𝑀1 = 𝑀 , and to construct machine 𝑀2 so that
𝐿(𝑀2) = ∅; then 𝐿(𝑀) = ∅ if and only if 𝐿(𝑀1) = 𝐿(𝑀2). There are many such machines that would work as
𝑀2, but the one that just immediately rejects is simplest.

We claim that the following Turing machine 𝐸 decides 𝐿∅ given access to oracle 𝑄:

function 𝐸(⟨𝑀⟩)
construct Turing machine “𝑀2(𝑤): reject”
return 𝑄(⟨𝑀⟩, ⟨𝑀2⟩)

Observe that𝐿(𝑀2) = ∅, trivially. So, we have the key property that ⟨𝑀⟩ ∈ 𝐿∅ if and only if (⟨𝑀⟩, ⟨𝑀2⟩) ∈ 𝐿EQ.

We analyze the behavior of 𝐸 on an arbitrary input ⟨𝑀⟩. First, 𝐸 halts because it just constructs the (fixed)
machine 𝑀2 and queries 𝑄, which halts by hypothesis. Second, by the key property above, the hypothesis on 𝑄,
and the definition of 𝐸,

⟨𝑀⟩ ∈ 𝐿∅ ⇐⇒ (⟨𝑀⟩, ⟨𝑀2⟩) ∈ 𝐿EQ

⇐⇒ 𝑄(⟨𝑀⟩, ⟨𝑀2⟩) accepts
⇐⇒ 𝐸(⟨𝑀⟩, 𝑥) accepts ,

as needed. So, by Definition 61, 𝐸 decides 𝐿∅, as claimed.

Example 108 We have seen that 𝐿ACC ≤𝑇 𝐿HALT. We now show the other direction, that 𝐿HALT ≤𝑇 𝐿ACC.

Let 𝐶 be an oracle that decides 𝐿ACC, i.e.,

• 𝐶 halts on every input, and

• 𝑀(𝑥) accepts if and only if 𝐶(⟨𝑀⟩, 𝑥) accepts.

We wish to construct a Turing machine 𝐻 that decides 𝐿HALT, i.e.,

• 𝐻 halts on every input, and

• 𝑀(𝑥) halts (accepts or rejects) if and only if 𝐻(⟨𝑀⟩, 𝑥) accepts.

The only case where the behavior of 𝐻 needs to differ from that of 𝐶 is where 𝑀(𝑥) rejects; we need 𝐻 to accept,
whereas 𝐶 rejects. So, to use 𝐶 to get the correct answer in this case, we construct a new program 𝑀 ′ that just
negates the accept/reject decision (if any) of 𝑀 .

We claim that the following Turing machine 𝐻 decides 𝐿HALT given access to oracle 𝐶:

function 𝐻(⟨𝑀⟩, 𝑥) construct Turing machine “𝑀 ′(𝑤): return the opposite of 𝑀(𝑤)”
if 𝐶(⟨𝑀⟩, 𝑥) accepts or 𝐶(⟨𝑀 ′⟩, 𝑥) accepts then accept
reject

We analyze the behavior of𝐻 on an arbitrary input (⟨𝑀⟩, 𝑥). First, 𝐻 halts on any input, because it just constructs
the code of 𝑀 ′ from that of 𝑀 and 𝑥, and twice queries 𝐶, which halts by hypothesis. Second, by the definition

11.2. More Undecidable Languages and Turing Reductions 112

Foundations of Computer Science, Release 0.5

of 𝐿HALT, the construction of 𝑀 ′, the hypothesis on 𝐶, and the definition of 𝐻 ,

(⟨𝑀⟩, 𝑥) ∈ 𝐿HALT ⇐⇒ 𝑀(𝑥) accepts or 𝑀(𝑥) rejects
⇐⇒ (⟨𝑀⟩, 𝑥) ∈ 𝐿ACC or (⟨𝑀 ′⟩, 𝑥) ∈ 𝐿ACC

⇐⇒ 𝐶(⟨𝑀⟩, 𝑥) accepts or 𝐶(⟨𝑀 ′⟩, 𝑥) accepts
⇐⇒ 𝐻(⟨𝑀⟩, 𝑥) accepts ,

as needed. So, by Definition 61, 𝐻 decides 𝐿HALT, as claimed.

Observe that the reduction 𝐻 invoked the oracle 𝐶 twice on different inputs. In general, to prove that 𝐴 ≤𝑇 𝐵,
the Turing machine that decides 𝐴 may call the oracle that decides 𝐵 any (finite) number of times, including more
than once, or even not at all.

Exercise 109 Prove that 𝐿ACC ≤𝑇 𝐿𝜀-HALT. (Hint: there is a fairly complex direct proof by reduction, and a very
short proof using results that have already been stated.)

Exercise 110 Prove that the language

𝐿𝜀-ACC = {⟨𝑀⟩ : 𝑀 accepts 𝜀}

is undecidable.

Exercise 111 Determine, with proof, whether the following language is decidable:

𝐿3 = {⟨𝑀⟩ : 𝑀 is a Turing machine and |𝐿(𝑀)| = 3} .

Exercise 112 Determine, with proof, whether the following language is decidable:

𝐿EVEN = {⟨𝑀⟩ : 𝑀 is a Turing machine and |𝐿(𝑀)| is finite and even} .

11.3 Wang Tiling

All the examples of undecidable languages we have seen thus far have been concerned with the behavior of Turing
machines. However, there are many other languages whose definitions appear to have nothing to do with Turing
machines or computation, and yet are also undecidable! It turns out that solving these problems would require solving
unsolvable problems about computation, because we can “embed” the halting problem into these problems.

Here we give an overview of the undecidability of a certain geometric problem, that of tiling a plane30 using some set
of shapes.

The computational question is: given a finite set 𝑆 of shapes, called tiles, is it possible to tile the plane using only the
tiles from 𝑆? We may use as many copies of each tile as we need, but they may not overlap or leave any uncovered
space. For the purposes of this discussion, we also disallow rotation of tiles. (If we want to allow certain rotations, we
can just include them in the tile set.)

An example of a valid tiling is the following from Study of Regular Division of the Plane with Reptiles by M. C.
Escher31: Here, the plane is tiled by a regular pattern using three reptile-shaped tiles.

30 https://en.wikipedia.org/wiki/Tessellation
31 https://en.wikipedia.org/wiki/M._C._Escher

11.3. Wang Tiling 113

https://en.wikipedia.org/wiki/Tessellation
https://en.wikipedia.org/wiki/M._C._Escher
https://en.wikipedia.org/wiki/M._C._Escher

Foundations of Computer Science, Release 0.5

Another example more akin to a jigsaw puzzle uses the following set of tiles:

First, we can fit the tiles together like so:

Then we can repeat this pattern to tile the whole plane:

While the two examples above admit periodic tilings, it is also possible to tile the plane in a non-periodic manner32.
The following is an example of a Penrose tiling33 that does so:

32 https://en.wikipedia.org/wiki/Aperiodic_tiling
33 https://en.wikipedia.org/wiki/Penrose_tiling

11.3. Wang Tiling 114

https://en.wikipedia.org/wiki/Aperiodic_tiling
https://en.wikipedia.org/wiki/Penrose_tiling

Foundations of Computer Science, Release 0.5

Not all tile sets admit tilings of the entire plane; for example, the set consisting of just a regular pentagon cannot do
so. A natural question is whether there is an algorithm that, given an arbitrary (finite) set 𝑆 of tile shapes, determines
whether it is possible to tile the plane with that set. We define the corresponding language 𝐿TILE as follows:

𝐿TILE = {⟨𝑆⟩ : 𝑆 is a tile set that admits a tiling of the entire plane} .

Is 𝐿TILE decidable? The mathematician Hao Wang posed this and related questions in the early 1960s—conjecturing
that the answer is “yes”—but in 1966, his student Robert Berger proved that amazingly, the answer is no! That is, there
is no algorithm that, given an arbitrary (but finite) set of tile shapes, correctly determines whether those shapes can be
used to tile the plane.

The key insight behind the proof is that tiling with certain shapes can be made to correspond exactly with the execution
of a given Turing machine. A bit more precisely, for any Turing machine 𝑀 there is a corresponding (computable)
tile set 𝑆𝑀 for which determining whether 𝑆𝑀 tiles the plane is equivalent to determining whether 𝑀(𝜀) halts—i.e.,
whether ⟨𝑀⟩ ∈ 𝐿𝜀-HALT. This insight is the heart of the proof that 𝐿𝜀-HALT ≤𝑇 𝐿TILE, so 𝐿TILE is indeed undecidable.

For the rest of the discussion, we restrict to the slightly simpler problem of determining whether a tile set 𝑆 can tile the
upper-right quadrant of the plane, rather than a whole plane. That is, the language we consider is:

𝐿QTILE = {⟨𝑆⟩ : 𝑆 is a tile set that admits a tiling of the upper-right quadrant} .

To simplify the picture and avoid complicated-looking shapes, we restrict our attention to tiles that are unit squares
with a “color” on each edge. Two tiles may be adjacent only if their shared edges overlap completely, and the colors
of these edges match. We can think of each color as representing some distinct “cut out” and “pasted on” shape, so
that only tiles with matching colors “fit together” in the required way. (As mentioned before, tiles may not be rotated
or flipped.) These are known as Wang tiles or Wang dominoes, after the mathematician Hao Wang, who studied the
computability of domino questions like this one.

1 2 3
green

green

bl
ac
k

re
d

green

black

bl
ac
k

bl
ue

red

black

bl
ue re
d

We also color the boundary of the quadrant black.

11.3. Wang Tiling 115

Foundations of Computer Science, Release 0.5

2

1

1

3

The question then is whether a given set of tiles can tile the whole quadrant under these constraints. For the tile set
above, we can see that it cannot. Only tile 2 may be placed in the bottom-left corner, then only tile 3 and tile 1 may
appear to its right and above it, respectively. While we can continue placing more copies of tile 1 in the upward
direction, no tile has a left boundary that is colored red, so we cannot fill out the rest of the quadrant to the right.

While we were able to reason that in this specific case, the quadrant cannot be tiled with the given set, in general, no
computational process can reach a correct conclusion. To demonstrate this, we will construct a tile set for which any
tiling corresponds exactly to the execution of an arbitrary given Turing machine. For concreteness we will illustrate
this for a single, simple machine, but the same process can be done for any given machine.

Before proceeding to our construction, we define a notation for representing the execution state, or configuration, of
a Turing machine. We need to capture several details that uniquely describe the configuration of the machine, which
consists of:

• the machine’s active state,

• the contents of the tape, and

• the position of the head.

We represent these details by an infinite sequence over the (finite) alphabet Γ ∪𝑄. Specifically, the sequence contains
the full contents of the tape, plus the active state 𝑞 ∈ 𝑄 immediately to the left of the symbol for the cell at which
the head is located. Thus, if the input to a machine is 𝑠1𝑠2 . . . 𝑠𝑛 and the initial state is 𝑞0, the following encodes the
starting configuration of the machine:

𝑞0𝑠1𝑠2 . . . 𝑠𝑛⊥⊥ · · ·

Since the head is at the leftmost cell and the state is 𝑞0, the string has 𝑞0 to the left of the leftmost tape symbol. Then
if the transition function gives 𝛿(𝑞0, 𝑠1) = (𝑞′, 𝑠′, 𝑅), the new configuration is:

𝑠′𝑞′𝑠2 . . . 𝑠𝑛⊥⊥ · · ·

The first cell has been modified to 𝑠′, the machine is in state 𝑞′, and the head is over the second cell, represented here
by writing 𝑞′ to the left of that cell’s symbol.

As a more concrete example, the configuration of the machine we saw previously that accepts strings containing only

11.3. Wang Tiling 116

Foundations of Computer Science, Release 0.5

ones (page 64), when run on the input 111010111, is as follows at each step:

𝑞start111010111⊥⊥⊥⊥ · · ·
1𝑞start11010111⊥⊥⊥⊥ · · ·
11𝑞start1010111⊥⊥⊥⊥ · · ·
111𝑞start010111⊥⊥⊥⊥ · · ·
1110𝑞rej10111⊥⊥⊥⊥ · · ·

We will encode such a configuration string using an infinite sequence of tiles, where the “colors” along the top edges
of the tiles indicate the configuration.

For a concrete running example, consider the simple machine that just alternately writes two different symbols to the
tape. Given an initial blank tape (i.e., 𝜀 as the input), the machine will write symbols indefinitely, never terminating.

q1 q2
1 ! 0, R

qstartqreject qaccept
0 ! 0, R ? ! ?, R

1 ! 1, R

q0 q1

? ! a, R

? ! b, R

1

We start constructing our tile set by introducing a tile for each symbol in the tape alphabet. Each tile’s top and bottom
edge is “colored” by the symbols appearing there (respectively), and the left and right edges have the “blank” color.

𝑎

𝑎

𝑏

𝑏

⊥

⊥

We next examine the transition function. For each left-moving transition

𝛿(𝑝, 𝑖) = (𝑞, 𝑗, 𝐿)

and each element of the tape alphabet 𝑠 ∈ Γ, we introduce the following pair of tiles:

𝑞, 𝑠

	𝑠
𝑞

𝑗

(𝑝, 𝑖)
𝑞

This represents part of the configuration when applying the transition. The bottom of the right tile indicates that we
are originally in state 𝑝 with the head on the symbol 𝑖, and the bottom of the left tile indicates there is a symbol 𝑠 in the
cell to the left. The tops of the tiles represent the result of the transition. The new state is 𝑞 and the head moves to the
left, which we indicate by the top of the left tile. The symbol in the right tile is overwritten with 𝑗, which we indicate at
the top of the right tile. Finally, we label the adjacent edges with 𝑞 to enable the two tiles to be adjacent to each other,
but not to the “symbol” tiles constructed above (which have “blank”-colored left and right edges).

Similarly, for each right-moving transition

𝛿(𝑝, 𝑖) = (𝑞, 𝑗, 𝑅)

and tape symbol 𝑠, we introduce the following pair of tiles:

11.3. Wang Tiling 117

Foundations of Computer Science, Release 0.5

𝑗

	(𝑝, 𝑖)
𝑞

𝑞, 𝑠

	𝑠
𝑞

Here, the head moves to the right, so the original state 𝑝 appears at the bottom in the left tile and the new state 𝑞 appears
at the top in the right tile.

For our simple Turing machine above, we have just two rightward transitions and three tape symbols, so the resulting
transition tiles are those below:

𝑏

	(𝑞!,⊥)
𝑞"

𝑞" ,⊥

	⊥
𝑞"

𝑎

	(𝑞",⊥)
𝑞!

𝑞! ,⊥

	⊥
𝑞!

𝑏

	(𝑞!,⊥)
𝑞"

𝑞" , 𝑎

	𝑎
𝑞"

𝑏

	(𝑞!,⊥)
𝑞"

𝑞" , 𝑏

	𝑏
𝑞"

𝑎

	(𝑞",⊥)
𝑞!

𝑞! , 𝑎

	𝑎
𝑞!

𝑎

	(𝑞",⊥)
𝑞!

𝑞! , 𝑏

	𝑏
𝑞!

(We have shown duplicate tiles here, but since we are ultimately constructing a set, we would merge any duplicates into
one.)

Finally, we introduce “start” tiles to encode the initial state of the machine. Since we are interested in the empty string
as input, only blank symbols appear in our start tiles. We have a corner tile that encodes the start state and the initial
head position all the way to the left, and we have a bottom tile that encodes the remaining blank cells:

𝑞! ,⊥
∗

⊥
∗ ∗

The full set of tiles for the simple Turing machine, wwith duplicates removed, is as follows:

𝑎

𝑎

𝑏

𝑏

⊥

⊥

𝑞! ,⊥
∗

⊥
∗ ∗

𝑏

	(𝑞",⊥)
𝑞!

𝑞! ,⊥

	⊥
𝑞!

𝑞! , 𝑎

	𝑎
𝑞!

𝑞! , 𝑏

	𝑏
𝑞!

𝑎

	(𝑞!,⊥)
𝑞"

𝑞" ,⊥

	⊥
𝑞"

𝑞" , 𝑎

	𝑎
𝑞"

𝑞" , 𝑏

	𝑏
𝑞"

Now that we have constructed our tile set, we can consider how a tiling of the quadrant would look, if one exists. First,
the only tile that can go in the bottom-left corner of the quadrant is our corner start tile.

11.3. Wang Tiling 118

Foundations of Computer Science, Release 0.5

𝑞! ,⊥
∗

Ti
m

e

Turing Machine Tape

Once we place the corner tile, the only tile that can go to its right is a bottom start tile, and likewise to its right,
indefinitely.

𝑞! ,⊥
∗

⊥
∗ ∗

⊥
∗ ∗

⊥
∗ ∗

⊥
∗ ∗

⊥
∗ ∗

⊥
∗ ∗

Ti
m

e

Turing Machine Tape

The resulting bottom row encodes the initial state of the machine: every cell contains the blank symbol (since the input
is 𝜀), the initial state is 𝑞0, and the head is at the leftmost cell. The position of the head is indicated by which tile has
both a state and a symbol in its top edge.

Now that the bottom row is determined, we consider what tiles may go above that row. Only one of the tiles has (𝑞0,⊥)

11.3. Wang Tiling 119

Foundations of Computer Science, Release 0.5

at its bottom edge, and it is one of the tiles corresponding to the transition 𝛿(𝑞0,⊥) = (𝑞1, 𝑎, 𝑅). This forces us to
use one of the other tiles for that transition to its right, and since that tile’s bottom edge must also match the top edge
of the tile below it, we use the corresponding transition tile that has ⊥ on its bottom edge. By similar reasoning, the
remaining tiles in the row must be symbol tiles for ⊥.

𝑞! ,⊥
∗

⊥
∗ ∗

⊥
∗ ∗

⊥
∗ ∗

⊥
∗ ∗

𝑎

	(𝑞!,⊥)
𝑞"

𝑞" ,⊥

	⊥
𝑞"

Ti
m

e

Turing Machine Tape

⊥

⊥

⊥

⊥

⊥

⊥
⊥

∗ ∗
⊥

∗ ∗

⊥

⊥

⊥

⊥

The configuration represented in the second row above corresponds to the machine having written 𝑎 in the first cell,
being in the state 𝑞1, with its head on the second cell. This is exactly the result of the transition.

To fill the next row, we must use a symbol tile for 𝑎 at the left. Then, we must use tiles for the transition 𝛿(𝑞1,⊥) =
(𝑞0, 𝑏, 𝑅). Finally, we must fill out the rest of the row with symbol tiles for ⊥.

11.3. Wang Tiling 120

Foundations of Computer Science, Release 0.5

𝑞! ,⊥
∗

⊥
∗ ∗

⊥
∗ ∗

⊥
∗ ∗

⊥
∗ ∗

𝑎

	(𝑞!,⊥)
𝑞"

𝑞" ,⊥

	⊥
𝑞"

Ti
m

e

𝑎

𝑎

𝑏

	(𝑞",⊥)
𝑞!

𝑞! ,⊥

	⊥
𝑞!

Turing Machine Tape

⊥
∗ ∗

⊥
∗ ∗

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

Again, the configuration represented here corresponds exactly with the state of the machine after two steps. The next
row is similarly determined.

Ti
m

e

𝑎

𝑎

𝑏

𝑏

𝑎

	(𝑞!,⊥)
𝑞"

𝑞" ,⊥

	⊥
𝑞"

Turing Machine Tape

⊥

⊥

⊥

⊥

⊥

⊥

𝑞! ,⊥
∗

⊥
∗ ∗

⊥
∗ ∗

⊥
∗ ∗

⊥
∗ ∗

𝑎

	(𝑞!,⊥)
𝑞"

𝑞" ,⊥

	⊥
𝑞"

𝑎

𝑎

𝑏

	(𝑞",⊥)
𝑞!

𝑞! ,⊥

	⊥
𝑞!

⊥
∗ ∗

⊥
∗ ∗

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

If the machine halts after some step, then there is no way to fill in the next row of the tiling, because there are no
transition tiles for the final states 𝑞acc, 𝑞rej—so the quadrant cannot be tiled. Conversely, if the machine runs forever,
then every row can be filled with corresponding tiles, so the quadrant can be tiled. In other words, the question of
whether the quadrant can be tiled is equivalent to the question of whether the machine loops on input 𝜀. Stated more

11.3. Wang Tiling 121

Foundations of Computer Science, Release 0.5

precisely, the key property is as follows: the code of the machine is in 𝐿𝜀-HALT if and only if the corresponding tile set
is not in 𝐿QTILE.

The following formalizes our proof of undecidability of 𝐿QTILE, by showing that 𝐿𝜀-HALT ≤𝑇 𝐿QTILE via a Turing
reduction. Suppose that 𝑇 is an oracle that decides 𝐿QTILE. We claim that the following Turing machine 𝐸 decides
𝐿𝜀-HALT given access to 𝑇 :

function 𝐸(⟨𝑀⟩) construct tile set 𝑆𝑀 from ⟨𝑀⟩ as outlined above
return the opposite of 𝑇 (⟨𝑆𝑀 ⟩)

We analyze the behavior of 𝐸 on an arbitrary input ⟨𝑀⟩. First, 𝐸 halts because constructing the tile set is a finite
computation based on the finite code—alphabets, states, transition function—of 𝑀 , and 𝑇 halts by hypothesis. (We
stress that he reduction does not simulate/run 𝑀 , or attempt to tile the quadrant; it just “syntactically” converts 𝑀 ’s
code into a finite set of tiles.) Second, by definition of 𝐿𝜀-HALT, the key property of the tile set, the hypothesis on 𝑇 ,
and the definition of 𝐸,

⟨𝑀⟩ ∈ 𝐿𝜀-HALT ⇐⇒ 𝑀(𝜀) halts
⇐⇒ ⟨𝑆𝑀 ⟩ /∈ 𝐿QTILE

⇐⇒ 𝑇 (⟨𝑆𝑀 ⟩) rejects
⇐⇒ 𝐸(⟨𝑀⟩) accepts ,

as needed. Thus, 𝐸 decides𝐿𝜀-HALT, and we have demonstrated that𝐿𝜀-HALT ≤𝑇 𝐿QTILE. Since𝐿𝜀-HALT is undecidable,
so is 𝐿QTILE.

Exercise 113 Modify the construction we used above to show instead that 𝐿HALT ≤𝑇 𝐿QTILE.

(Hint: only the set of start tiles needs to be changed, and the set will be different for different machine inputs.)

11.3. Wang Tiling 122

CHAPTER

TWELVE

RECOGNIZABILITY

Recall that there is a relaxation of the notion of deciding, called recognizing. For convenience we repeat Definition 62
here.

Definition 114 (‘Recognizes’ for Turing machines) A Turing machine 𝑀 recognizes a language 𝐿 ⊆ Σ* if:

1. 𝑀 accepts every 𝑥 ∈ 𝐿, and

2. 𝑀 rejects or loops on every 𝑥 /∈ 𝐿.

Equivalently: 𝑥 ∈ 𝐿 if and only if 𝑀 accepts 𝑥.

A language is recognizable if some Turing machine recognizes it.

Notice that, as in the definition of “decides”, the machine still must accept every string in the language. However, here
there is no requirement that the machine halts on all inputs; it may loop on some (or even all) inputs that are not in the
language. In other words, any output the machine produces is correct, but for inputs where the correct answer is “no”
(and only for such inputs), the machine need not produce an output at all.

Tautologically, any Turing machine 𝑀 recognizes exactly one language, namely, the language 𝐿(𝑀) = {𝑥 ∈ Σ* :
𝑀(𝑥) accepts} of those strings the machines accepts. Also trivially, a machine that decides a language also recognizes
that same language, but not necessarily vice-versa.

A language may be undecidable but recognizable. We have seen several examples of undecidable languages, including
𝐿ACC, 𝐿HALT, and 𝐿𝜀-HALT, and in our coverage of simulation (page 102) we saw that the universal Turing machine
𝑈 recognizes the language 𝐿(𝑈) = 𝐿ACC, so 𝐿ACC is recognizable. And we will see below, 𝐿HALT and 𝐿𝜀-HALT are
recognizable as well.

Is every language recognizable? We have already seen that this is not the case: the diagonalization proof of Theorem
85 constructed a (contrived) unrecognizable language, and Theorem 87 showed that the “barber” language (page 101)
is also unrecognizable. In this section we will see a technique for showing that other languages are unrecognizable as
well.

But before dealing with unrecognizability, how can we show that a language 𝐿 is recognizable? Similar to how we
show that a language is decidable, we need only give a Turing machine that recognizes 𝐿. For example, there is a
straightforward recognizer for the halting language 𝐿HALT.

Theorem 115 The language 𝐿HALT is recognizable.

Proof 116 We claim that the following Turing machine recognizes 𝐿HALT.

function 𝐻𝑟(⟨𝑀⟩, 𝑥) simulate 𝑀(𝑥) and ignore its output (if any)
accept

We analyze the behavior of 𝐻𝑟 on an arbitrary input (⟨𝑀⟩, 𝑥):

123

Foundations of Computer Science, Release 0.5

• If (⟨𝑀⟩, 𝑥) ∈ 𝐿HALT, then 𝑀(𝑥) halts. In this case, the simulation of 𝑀(𝑥) in 𝐻𝑟 terminates, and 𝐻𝑟

proceeds to accept (⟨𝑀⟩, 𝑥), as needed.

• If (⟨𝑀⟩, 𝑥) /∈ 𝐿HALT, then 𝑀(𝑥) loops. In this case, the simulation of 𝑀(𝑥) in 𝐻𝑟 does not terminate (and
the second line is never reached), so 𝐻𝑟 loops on (⟨𝑀⟩, 𝑥).

Therefore, by Definition 62, 𝐻𝑟 recognizes 𝐿HALT. □

Exercise 117 Adapt the proof of Theorem 115 to prove that 𝐿𝜀-HALT is recognizable.

As another example, in Lemma 65 we proved that the class of decidable languages is closed under the union operation,
i.e., if 𝐿1, 𝐿2 are any decidable languages, then their union 𝐿 = 𝐿1 ∪𝐿2 = {𝑥 : 𝑥 ∈ 𝐿1 or 𝑥 ∈ 𝐿2} is also decidable.
Does the same hold with “decidable” replaced by “recognizable”? It does indeed, but adapting the proof to work with
recognizability is more subtle, as we now discuss.

Because 𝐿1 and 𝐿2 are recognizable, there exist Turing machines 𝑀1 and 𝑀2 that recognize 𝐿1 and 𝐿2, respectively.
Let’s consider whether the machine 𝑀 we constructed in the proof of Lemma 65 recognizes 𝐿 = 𝐿1 ∪ 𝐿2:

function 𝑀 (𝑥)
if 𝑀1(𝑥) accepts then accept
if 𝑀2(𝑥) accepts then accept
reject

Unfortunately, this machine does not necessarily recognize 𝐿, because 𝑀1 may not be a decider. Specifically, suppose
that 𝑥 /∈ 𝐿1 but 𝑥 ∈ 𝐿2, so 𝑥 ∈ 𝐿, and therefore we need 𝑀(𝑥) to accept in order for 𝑀 to recognize 𝐿. Now suppose
that 𝑀1(𝑥) happens to loop—which it may do, because it is merely a recognizer for 𝐿1. Then 𝑀(𝑥) loops as well—but
this is incorrect behavior! Even though 𝑀2(𝑥) is guaranteed to accept, 𝑀(𝑥) never reaches the point of simulating it.
As a potential fix, we could try swapping the first two lines of 𝑀 , but that attempt would fail due to a symmetric issue.

The issue here is similar to what we encountered in the proof that the set of integers is countable (Example 74). Our
attempt to enumerate the integers by first listing the nonnegative integers failed, because we would never exhaust them
to reach the negative integers. The solution was to interleave the nonnegative and negative integers, so that every
specific integer would eventually be reached.

Here we can follow an analogous strategy called alternation, interleaving the simulated executions of 𝑀1 and 𝑀2:

function 𝑀 (𝑥)
alternate between simulations of 𝑀1(𝑥) and 𝑀2(𝑥)
if either one accepts then accept
if both reject then reject

How can we alternate between the executions of 𝑀1(𝑥) and 𝑀2(𝑥)? When simulating their executions in a Turing
machine, we run one step of 𝑀1 (i.e., apply its transition function once), then one step of 𝑀2, then another step of 𝑀1,
then another step of 𝑀2, and so on. (If a simulated machine halts, then we do not run any further steps of it, because
such steps are not defined.) Similarly, real computers simulate parallel execution of multiple programs on a single
processor by rapidly switching between programs. So, we can alternate executions both in theory and in practice.

We now analyze the behavior of the above 𝑀 on an arbitrary input 𝑥:

• If 𝑥 ∈ 𝐿 = 𝐿1 ∪ 𝐿2, then 𝑥 ∈ 𝐿1 or 𝑥 ∈ 𝐿2 (or both). So, at least one of 𝑀1(𝑥),𝑀2(𝑥) accepts, because
𝑀𝑖 is a recognizer for 𝐿𝑖. Since 𝑀 alternates between the simulated executions of 𝑀1(𝑥) and 𝑀2(𝑥), it will
eventually reach a point at which one of them accepts, so 𝑀(𝑥) accepts, as needed.

• If 𝑥 /∈ 𝐿, then 𝑥 /∈ 𝐿1 and 𝑥 /∈ 𝐿2. So, neither 𝑀1(𝑥) nor 𝑀2(𝑥) accepts; each one either rejects or loops.
There are two cases: if both 𝑀1(𝑥) and 𝑀2(𝑥) reject, then 𝑀(𝑥) will reach its final line and reject. Otherwise,

124

Foundations of Computer Science, Release 0.5

at least one of 𝑀1(𝑥),𝑀2(𝑥) loops, so the alternating simulation runs forever, i.e., 𝑀(𝑥) loops. Either way,
𝑀(𝑥) rejects or loops, as needed.

Alternatively and more succinctly, we can see by definition of 𝐿, hypothesis on 𝑀1 and 𝑀2, and definition of 𝑀 ,

𝑥 ∈ 𝐿 ⇐⇒ 𝑥 ∈ 𝐿1 or 𝑥 ∈ 𝐿2

⇐⇒ 𝑀1(𝑥) accepts or 𝑀2(𝑥) accepts
⇐⇒ 𝑀(𝑥) accepts .

Therefore, by Definition 62, 𝑀 recognizes 𝐿, hence 𝐿 is recognizable. We have just proved the following theorem.

Theorem 118 For any recognizable languages 𝐿1 and 𝐿2, their union 𝐿 = 𝐿1 ∪ 𝐿2 = {𝑥 : 𝑥 ∈ 𝐿1 or 𝑥 ∈ 𝐿2}
is also recognizable. In other words, the class of recognizable languages is closed under union.

Exercise 119 Adapt the proof of Theorem 118 to prove that the class of recognizable languages is closed under
intersection.

Is the class of recognizable languages closed under complement, like the class of decidable languages is? In other
words, if 𝐿 is a recognizable language, is its complement 𝐿 necessarily recognizable? It turns out that the answer is
no! We will prove this somewhat indirectly, by showing that if a language and its complement are both recognizable,
then the language is decidable.

Theorem 120 If a language𝐿 and its complement𝐿 are both recognizable, then𝐿 is decidable (and by symmetry,
so is 𝐿).

Proof 121 By hypothesis, there exist Turing machines 𝑀 and 𝑀 that recognize 𝐿 and 𝐿, respectively. Since 𝑀
recognizes 𝐿,

𝑥 ∈ 𝐿 ⇐⇒ 𝑀(𝑥) accepts .

And since 𝑀 recognizes 𝐿,

𝑥 /∈ 𝐿 ⇐⇒ 𝑥 ∈ 𝐿 ⇐⇒ 𝑀(𝑥) accepts .

So, for every input 𝑥, exactly one of 𝑀(𝑥) and 𝑀(𝑥) accepts, and 𝑥 ∈ 𝐿 if and only if 𝑀(𝑥) accepts and 𝑀(𝑥)
does not accept.

We now claim that the following Turing machine𝑀 ′ decides𝐿. The key idea is to alternate between the executions
of 𝑀 and 𝑀 on the input, and see which one accepts to determine whether the input is in 𝐿.

function 𝑀 (𝑥)
alternate between simulations of 𝑀(𝑥) and 𝑀(𝑥)
if 𝑀(𝑥) ever accepts then accept
if 𝑀(𝑥) ever accepts then reject

We analyze the behavior of 𝑀 ′ on an arbitrary input 𝑥. First, 𝑀 ′(𝑥) halts, because as noted above, exactly one
of 𝑀(𝑥) and 𝑀(𝑥) accepts, and either case causes 𝑀 ′(𝑥) to halt. Second, by the properties of 𝑀 and 𝑀 stated
above and the definition of 𝑀 ′,

𝑥 ∈ 𝐿 ⇐⇒ 𝑀(𝑥) accepts and 𝑀(𝑥) does not accept
⇐⇒ 𝑀 ′(𝑥) accepts .

So, by Definition 61, 𝑀 ′ decides 𝐿, hence 𝐿 is decidable. □

125

Foundations of Computer Science, Release 0.5

12.1 Unrecognizable Languages

The contrapositive of Theorem 120 is that if a language is undecidable, then either it or its complement (or both) is
unrecognizable. This gives us a tool to show that a language is unrecognizable.

Corollary 122 If a language 𝐿 is undecidable, then at least one of 𝐿 and 𝐿 is unrecognizable. In particular, if
𝐿 is undecidable and its complement 𝐿 is recognizable, then 𝐿 is unrecognizable.

From Corollary 122 we can immediately conclude that the complement languages34

𝐿ACC = {(⟨𝑀⟩, 𝑥) : 𝑀 is a Turing machine and 𝑀(𝑥) does not accept}

and

𝐿HALT = {(⟨𝑀⟩, 𝑥) : 𝑀 is a Turing machine and 𝑀(𝑥) loops}

are unrecognizable.

A language whose complement is recognizable (without any other restriction on the language itself) is called co-
recognizable.

Definition 123 A language 𝐿 is co-recognizable if 𝐿 is recognizable.

Since the class of decidable languages is closed under complement, and every decidable language is recognizable, any
decidable language is both recognizable and co-recognizable. In fact, Claim 120 implies that the class of decidable
languages is the intersection of the class of recognizable languages and the class of co-recognizable languages.35 (Be
careful about interpreting the preceding sentence: it is not saying anything about the intersection of languages them-
selves; it is referring to the intersection of classes of languages, i.e., the set of languages that are members of both
classes.)

Since every program 𝑀 recognizes exactly one language 𝐿(𝑀), it “co-recognizes” exactly one language 𝐿(𝑀). Since
the set of Turing machines is countable (see Lemma 83), and since each Turing machine (co-)recognizes exactly one
language, the set of (co-)recognizable languages is also countable. Because the set of all languages is uncountable,
“almost all” languages are neither recognizable nor co-recognizable.

Example 124 We show that the language

𝐿NO-FOO = {⟨𝑀⟩ : 𝑀 is a Turing machine and 𝑓𝑜𝑜 /∈ 𝐿(𝑀)}

is unrecognizable.

We first observe that 𝐿NO-FOO = 𝐿FOO, where 𝐿FOO is the undecidable language from Example 105. Since the
complement of any undecidable language is undecidable, 𝐿NO-FOO is undecidable as well.

We now show that 𝐿FOO is recognizable. The following program recognizes it:

function 𝑅(⟨𝑀⟩) return 𝑀(𝑓𝑜𝑜)

34 To be precise, the complement language𝐿ACC consists of all strings that are not of the form (⟨𝑀⟩, 𝑥)where𝑀 is a Turing machine that accepts
𝑥 (and similarly for 𝐿HALT). Depending on the input encoding, this might include “malformed” strings that do not encode any Turing machine-string
pair (⟨𝑀⟩, 𝑥) at all. In this case, the above description of 𝐿ACC would not be correct, because it does not include such strings. However, we can
assume without loss of generality that every string encodes some input object of the proper form, simply by redefining any “malformed” strings to
represent some fixed “default” object. Throughout the text we implicitly assume this, to simplify the descriptions of complement languages.

35 The class of recognizable languages is denoted RE (short for recursively enumerable, an equivalent definition of recognizable), and the class of
co-recognizable languages is denoted coRE. The class of decidable languages is denoted R (short for recursive). We have RE ∩ coRE = R. Some
languages are neither in RE nor in coRE, but how to prove this is beyond the scope of this text.

12.1. Unrecognizable Languages 126

Foundations of Computer Science, Release 0.5

This is because

⟨𝑀⟩ ∈ 𝐿FOO ⇐⇒ 𝑀(𝑓𝑜𝑜) accepts
⇐⇒ 𝑅(⟨𝑀⟩) accepts .

Since 𝐿NO-FOO is undecidable and its complement language 𝐿FOO is recognizable, by Corollary 122 we conclude
that 𝐿NO-FOO is unrecognizable.

Example 125 We show that the language

𝐿NO-FOO-BAR = {⟨𝑀⟩ : 𝑀 is a TM and 𝑓𝑜𝑜 /∈ 𝐿(𝑀) and 𝑏𝑎𝑟 /∈ 𝐿(𝑀)}

is unrecognizable.

Its complement language is 𝐿FOO-OR-BAR = {⟨𝑀⟩ : 𝑓𝑜𝑜 ∈ 𝐿(𝑀) or 𝑏𝑎𝑟 ∈ 𝐿(𝑀)}. As noted in Example 105,
this language is undecidable, so 𝐿NO-FOO-BAR is undecidable as well.

We now show that 𝐿FOO-OR-BAR is recognizable. The following program recognizes it:

function 𝑅(⟨𝑀⟩)
alternate between simulations of 𝑀(𝑓𝑜𝑜) and 𝑀(𝑏𝑎𝑟)
if at least one accepts then accept
if both reject then reject

This is because

⟨𝑀⟩ ∈ 𝐿FOO-OR-BAR ⇐⇒ 𝑀(𝑓𝑜𝑜) accepts or 𝑀(𝑏𝑎𝑟) accepts
⇐⇒ 𝑅(⟨𝑀⟩) accepts .

Since 𝐿NO-FOO-BAR is undecidable and its complement language 𝐿FOO-OR-BAR is recognizable, by Corollary 122
we conclude that 𝐿NO-FOO-BAR is unrecognizable.

12.2 Dovetailing

Here we introduce a powerful simulation technique called “dovetailing”, which we use to prove that the language

𝐿∅ = {⟨𝑀⟩ : 𝑀 is a Turing machine and 𝐿(𝑀) = ∅}

from Example 106 is unrecognizable. Because we already showed that it is undecidable, by Corollary 122, it suffices
to show that its complement language

𝐿∅ = {⟨𝑀⟩ : 𝑀 is a Turing machine and 𝐿(𝑀) ̸= ∅}

is recognizable. To do so, we define a recognizer 𝑅 for 𝐿∅. We require the following behavior for an arbitrary input
machine 𝑀 :

• If 𝑀 accepts at least one input string, then 𝑅(⟨𝑀⟩) must accept;

• If 𝑀 does not accept any input string, then 𝑅(⟨𝑀⟩) must reject or loop.

In other words, we require that ⟨𝑀⟩ ∈ 𝐿∅ if and only if 𝑅(⟨𝑀⟩) accepts.

Given (the code of) an arbitrary machine 𝑀 , we don’t know which input(s) it accepts, if any. If we wanted to determine
whether 𝑀 accepts at least one input from some finite set 𝑆 = {𝑥1, . . . , 𝑥𝑛}, then similar to how we showed that the
union of two recognizable languages is recognizable, we could alternate among simulated executions of 𝑀 on each

12.2. Dovetailing 127

Foundations of Computer Science, Release 0.5

element 𝑥𝑖 ∈ 𝑆, until one of those executions accepts (if ever). Unfortunately, in the present context, the set of possible
inputs to 𝑀 is the (countably) infinite set Σ* = {𝑥1, 𝑥2, 𝑥3, . . .}, so this basic alternation technique does not work—it
would run one step of 𝑀(𝑥1), then one step of 𝑀(𝑥2), then one step of 𝑀(𝑥3), and so on, without ever returning to
𝑀(𝑥1).

More explicitly, we want to simulate running 𝑀 on infinitely many inputs 𝑥 ∈ Σ* for an unbounded number of steps
𝑠 ∈ N+ “in parallel,” so that simulation will ultimately accept if (and only if) 𝑀 accepts at least one of the inputs 𝑥𝑖

within some (finite) number of steps 𝑠𝑗 . Essentially, we have the product Σ* × N+ of two countably infinite sets, and
we need to come up with an ordering so that we will eventually reach each element (𝑥𝑖, 𝑠𝑗) ∈ Σ*×N+ of this product.

Similarly to how our enumeration of the integers (Example 74) inspired the idea of alternating simulations of two
executions, our enumeration of the rationals (Example 75) inspires a similar scheduling of (countably) infinitely many
executions, as illustrated below. This process is called dovetailing.

step

𝟏 𝟐 𝟑 𝟒 𝟓 ⋯

in
pu

t

𝜺 (𝜀, 1) (𝜀, 2) (𝜀, 3) (𝜀, 4) (𝜀, 5)

𝟎 (0,1) (0,2) (0,3) (0,4) (0,5)

𝟏 (1,1) (1,2) (1,3) (1,4) (1,5)

𝟎𝟎 (00,1) (00,2) (00,3) (00,4) (00,5)

𝟎𝟏 (01,1) (01,2) (01,3) (01,4) (01,5)

𝟏𝟎 (10,1) (10,2) (10,3) (10,4) (10,5)

𝟏𝟏 (11,1) (11,2) (11,3) (11,4) (11,5)

000 (000,1) (000,2) (000,3) (000,4) (000,5)

⋮

Our simulation proceeds in rounds. In round 𝑖, we perform a single additional step of each execution whose input index
is at most 𝑖. More precisely, we define 𝑅 as follows, where Σ* = {𝑥1, 𝑥2, 𝑥3, . . .} is our standard enumeration of all
input strings.

function 𝑅(⟨𝑀⟩)
for 𝑖 = 1, 2, . . . do

for 𝑗 = 1 to 𝑖 do simulate one more step of 𝑀(𝑥𝑗)
if that step accepts then accept

In the first round, 𝑅 simulates the first step of the execution of 𝑀 on the first input 𝑥1. In the second round, 𝑅 simulates
another step on 𝑥1, and the first one on 𝑥2. In the third round, 𝑅 simulates another step on 𝑥1 and 𝑥2, and the first step
on 𝑥3, and so on. Observe that any particular round 𝑖 executes a finite number 𝑖 of steps in total, so the next round will
run. And, any particular input 𝑥𝑖 begins its execution in round 𝑖, i.e., after a finite number of steps, and its execution
continues in every subsequent round until it halts (if ever).

More formally, we analyze the behavior of 𝑅 as follows. By inspection of its code, 𝑅(⟨𝑀⟩) accepts only if some

12.2. Dovetailing 128

Foundations of Computer Science, Release 0.5

(simulated) 𝑀(𝑥𝑖) accepts, i.e., 𝑅(⟨𝑀⟩) accepts =⇒ ⟨𝑀⟩ ∈ 𝐿∅. For the other direction, if ⟨𝑀⟩ ∈ 𝐿∅, then there
exists some 𝑥𝑖 ∈ Σ* and 𝑠𝑗 ∈ N+ for which 𝑀(𝑥𝑖) accepts on step 𝑠𝑗 . Then 𝑅(⟨𝑀⟩) will accept in round 𝑖+ 𝑗 − 1,
because it runs the first step of the simulation on 𝑥𝑖 in round 𝑖, and it runs one more step of that simulation in each
subsequent round. So, we have shown that ⟨𝑀⟩ ∈ 𝐿∅ ⇐⇒ 𝑅(⟨𝑀⟩) accepts, as needed.

An interesting point is that 𝑅 does not reject any input, i.e., for every ⟨𝑀⟩ ∈ 𝐿∅, we have that 𝑅(⟨𝑀⟩) loops. This
is because 𝑅 keeps simulating 𝑀 on an endless supply of additional inputs, searching for one that 𝑀 accepts. But
because there is no such input, the search never ends.

To recap, we have seen that 𝐿∅ is undecidable, and that its complement 𝐿∅ is recognizable, so by Corollary 122, 𝐿∅ is
unrecognizable.

Exercise 126 Determine, with proof, whether the following language is recognizable, co-recognizable, or both:

𝐿REJ = {(⟨𝑀⟩, 𝑥) : 𝑀 rejects 𝑥} .

Exercise 127 Determine, with proof, whether the following language is recognizable, co-recognizable, or both:

𝐿HATES-EVENS = {⟨𝑀⟩ : 𝑀 does not accept any even number} .

12.2. Dovetailing 129

CHAPTER

THIRTEEN

RICE’S THEOREM

We previously proved (see Example 106) that

𝐿∅ = {⟨𝑀⟩ : 𝑀 is a Turing machine and 𝐿(𝑀) = ∅}

is undecidable.

Let’s define a similar language and determine whether it too is undecidable. Define

𝐿{𝜀} = {⟨𝑀⟩ : 𝑀 is a Turing machine and 𝐿(𝑀) = {𝜀}} .

As we saw with 𝐿∅ and ∅ = {}, the languages 𝐿{𝜀} and {𝜀} are not the same. The latter is the language containing
only the single element 𝜀, and it is decidable because it is decided by the following Turing machine:

function 𝐷{𝜀}(𝑥)
if 𝑥 = 𝜀 then accept
reject

On the other hand, 𝐿{𝜀} is an infinite set consisting of (the codes of) all Turing machines that accept only the empty
string 𝜀.

Here we prove that 𝐿ACC ≤𝑇 𝐿{𝜀}, hence 𝐿{𝜀} is undecidable. Suppose that 𝐸 is an oracle that decides 𝐿{𝜀}. We
claim that the following Turing machine 𝐶 decides 𝐿ACC given access to 𝐸:

function 𝐶(⟨𝑀⟩, 𝑥) construct the following Turing machine:
function 𝑀 ′(𝑤)

if 𝑤 = 𝜀 then return 𝑀(𝑥)
elsereject

return 𝐸(⟨𝑀 ′⟩)

We analyze 𝐶 as follows. Observe that if 𝑀(𝑥) accepts, then 𝐿(𝑀 ′) = {𝜀}, because 𝑀 ′ accepts on 𝑤 = 𝜀 and rejects
all other 𝑤. Whereas if 𝑀(𝑥) does not accept, then 𝐿(𝑀 ′) = ∅ ≠ {𝜀} because 𝑀 ′ does not accept any string. So
overall, 𝑀(𝑥) accepts if and only if 𝐿(𝑀 ′) = {𝜀}, which implies that (⟨𝑀⟩, 𝑥) ∈ 𝐿ACC ⇐⇒ 𝐶(⟨𝑀⟩, 𝑥) accepts.
And since 𝐶 halts on any input by inspection, 𝐶 decides 𝐿ACC.

We can generalize the reasoning from the previous two proofs as follows.

Theorem 128 Let 𝐴 be a recognizable language, and define the language

𝐿𝐴 = {⟨𝑀⟩ : 𝑀 is a Turing machine and 𝐿(𝑀) = 𝐴}

consisting of (the codes of) all Turing machines 𝑀 for which 𝐿(𝑀) = 𝐴. Then 𝐿𝐴 is undecidable.

130

Foundations of Computer Science, Release 0.5

Before proving the theorem, we remark that since 𝐴 is recognizable, there exists a Turing machine 𝑅 for which 𝐿(𝑅) =
𝐴. In fact, there are infinitely many such machines. Given any Turing machine 𝑅 that recognizes 𝐴, we can construct a
distinct Turing machine 𝑅′ that also recognizes 𝐴: letting 𝑄 be the set of states of 𝑅, we construct 𝑅′ by adding to 𝑄 a
new state 𝑞′ that has no incoming transitions; this does not affect the behavior of the machine. Since 𝐿𝐴 has infinitely
many elements, it cannot be decided by just hardcoding its elements into a Turing machine. Indeed, 𝐿𝐴 is undecidable,
as we now prove.

Proof 129 Assume that 𝐴 ̸= ∅, since we have already shown that 𝐿∅ is undecidable (see Example 106).

We show that 𝐿ACC ≤ 𝐿𝐴. Letting 𝐷 be an oracle that decides 𝐿𝐴, we construct a Turing machine 𝐶 that
decides 𝐿ACC given access to 𝐷. Since 𝐴 is recognizable, there exists a Turing machine 𝑅 that recognizes 𝐴, i.e.,
𝐿(𝑅) = 𝐴, which we also use in our construction of 𝐶.

function 𝐶(⟨𝑀⟩, 𝑥) construct the following Turing machine:
function 𝑀 ′(𝑤)

if 𝑀(𝑥) accepts then return 𝑅(𝑤)
elsereject

return 𝐷(⟨𝑀 ′⟩)

(Note that it is important here that 𝑅 is a Turing machine, not a “black-box” oracle, because we need to build its
code into the code of the Turing machine 𝑀 ′.)

We first analyze the behavior of 𝑀 ′:

• If𝑀(𝑥) accepts, then𝐿(𝑀 ′) = 𝐴, because𝑀 ′ accepts exactly those strings that𝑅 accepts, and𝐿(𝑅) = 𝐴
by hypothesis.

• Conversely, if 𝑀(𝑥) does not accept, then 𝐿(𝑀 ′) = ∅ ≠ 𝐴, because 𝑀 ′(𝑤) either loops (if 𝑀(𝑥) loops)
or rejects (if 𝑀(𝑥) rejects) for any input 𝑤.

So altogether, we have the key property that (⟨𝑀⟩, 𝑥) ∈ 𝐿ACC if and only if 𝐿(𝑀 ′) = 𝐴.

The behavior of 𝐶 on an arbitrary input (⟨𝑀⟩, 𝑥) is as follows. First, 𝐶 halts, because it just constructs 𝑀 ′ and
queries 𝐷 on it, which halts. Second, by the key property above

(⟨𝑀⟩, 𝑥) ∈ 𝐿ACC ⇐⇒ 𝐿(𝑀 ′) = 𝐴

⇐⇒ 𝐷(⟨𝑀 ′⟩) accepts
⇐⇒ 𝐶(⟨𝑀⟩, 𝑥) accepts .

So by Definition 61, 𝐶 decides 𝐿ACC, as claimed. □

It is worth mentioning that Theorem 128 holds only for recognizable languages 𝐴. If 𝐴 is unrecognizable, then 𝐿𝐴 is
actually decidable! This is because by definition of unrecognizable, there is no Turing machine 𝑀 for which 𝐿(𝑀) =
𝐴, so 𝐿𝐴 = ∅, which is trivially decided by the machine that rejects all inputs.

We can further generalize Theorem 128 by considering sets of languages, rather than just a single language in isolation.

Definition 130 (Semantic Property) A semantic property is a set of languages.

We often use the symbol P to represent a semantic property. The following is an example of a semantic property:

P∞ = {𝐿 ⊆ Σ* : |𝐿| is infinite} .

P∞ is the set of languages that have infinitely many elements. Examples of languages in P∞ include Σ*, {𝑥 ∈ Σ* :
𝑥 has no 1s} (assuming Σ ̸= {1}), and every undecidable language (but not every decidable language, because some
of these are finite). Example of languages that are not in P∞ include ∅ and {𝑥 ∈ Σ* : |𝑥| < 100}.

131

Foundations of Computer Science, Release 0.5

Definition 131 (Trivial Semantic Property) A semantic property P is trivial if either every recognizable lan-
guage is in P, or no recognizable language is in P.

Examples of trivial properties include:

• P = ∅, which has no recognizable language in it;

• the set of all recognizable languages P = RE, which has every recognizable language in it;

• the set of all unrecognizable languages P = RE, which has no recognizable language in it; and

• the set of all languages P = 𝒫(Σ*), which has every recognizable language in it.

Example of nontrivial properties include:

• P = {∅,Σ*}, because it has the recognizable language ∅ but not the recognizable language {𝜀};

• P = {𝐿BARBER, 𝐿ACC, 𝐿HALT, every finite language 𝐿}, because it has the recognizable language 𝐿ACC but not
the recognizable language 𝐿∅; and

• the set of decidable languages P = R, because some recognizable languages (like Σ*) are decidable, and other
recognizable languages (like 𝐿ACC and 𝐿HALT) are not decidable.

We now generalize our notion of a language of (codes of) Turing machines, from machines that recognize a specific
language 𝐴, to machines that recognize some language in a semantic property P. Define 𝐿P as follows:

𝐿P = {⟨𝑀⟩ : 𝑀 is a Turing machine and 𝐿(𝑀) ∈ P} .

The next two results show that whether 𝐿P is decidable is determined entirely by whether P is trivial.

Claim 132 If P is a trivial semantic property, then 𝐿P is decidable.

Proof 133 If P is trivial, then it either has all recognizable languages, or no recognizable language.

• Case 1: P has all recognizable languages. Then the code of every Turing machine 𝑀 is in 𝐿P: since 𝐿(𝑀)
is recognizable by definition, 𝐿(𝑀) ∈ P, so ⟨𝑀⟩ ∈ 𝐿P. So, 𝐿P is decided by the machine that accepts any
valid Turing-machine code.

• Case 2: P has no recognizable language. Then the code of no program 𝑀 is in 𝐿P: since 𝐿(𝑀) is rec-
ognizable by definition, 𝐿(𝑀) /∈ P, so ⟨𝑀⟩ /∈ 𝐿P. So, 𝐿P is decided by the machine that just rejects its
input.

We now state and prove a very general and powerful theorem known as Rice’s theorem.

Theorem 134 (Rice’s Theorem) If P is a nontrivial semantic property, then 𝐿P is undecidable.

132

Foundations of Computer Science, Release 0.5

Proof 135 We show that 𝐿ACC ≤𝑇 𝐿P, hence 𝐿P is undecidable. Letting 𝐷 be an oracle that decides 𝐿P, we
construct a Turing machine 𝐶 that decides 𝐿ACC given access to 𝐷.

First, we consider the case where ∅ /∈ P. Since P is nontrivial, there is some recognizable language 𝐴 ∈ P, and
𝐴 ̸= ∅ because ∅ /∈ P. Since 𝐴 is recognizable, there is a Turing machine 𝑅𝐴 that recognizes it. We construct 𝐶
exactly as in the proof of Theorem 128:

function 𝐶(⟨𝑀⟩, 𝑥) construct the following Turing machine:
function 𝑀 ′(𝑤)

if 𝑀(𝑥) accepts then return 𝑅𝐴(𝑤)
elsereject

return 𝐷(⟨𝑀 ′⟩)

Very similar to our analysis in the proof of Theorem 128, because 𝐴 ∈ P and ∅ /∈ P, we have the key property
that (⟨𝑀⟩, 𝑥) ∈ 𝐿ACC if and only if 𝐿(𝑀 ′) ∈ P. The analysis of the behavior of 𝐶 is also very similar: 𝐶 halts
on every input, and (⟨𝑀⟩, 𝑥) ∈ 𝐿ACC ⇐⇒ 𝐶(⟨𝑀⟩, 𝑥) accepts, so 𝐶 decides 𝐿ACC, as needed.

The case where ∅ ∈ P proceeds symmetrically: by nontriviality, there is some recognizable language 𝐵 /∈ P with
𝐵 ̸= ∅, and some Turing machine 𝑅𝐵 that recognizes 𝐵. Then we construct 𝐶 as follows (the only difference
with the 𝐶 constructed above is that it uses the recognizer 𝑅𝐵 instead of 𝑅𝐴, and it negates the output of the
oracle 𝐷):

function 𝐶(⟨𝑀⟩, 𝑥) construct the following Turing machine:
function 𝑀 ′(𝑤)

if 𝑀(𝑥) accepts then return 𝑅𝐵(𝑤)
elsereject

return the opposite of 𝐷(⟨𝑀 ′⟩)

The analysis is symmetric to the above, based on the key property that (⟨𝑀⟩, 𝑥) ∈ 𝐿ACC if and only if 𝐿(𝑀 ′) /∈ P.
(This is why 𝐶 negates the answer of 𝐷.) So, 𝐶 decides 𝐿ACC, as needed. □

13.1 Rice’s Theorem and Program Analysis

Rice’s theorem has profound implications for compilers and program analysis. While the formulation given above is
with respect to the language of a Turing machine, the typical expression of Rice’s theorem in the field of programming
languages is more expansive:

Any “nontrivial” question about the runtime behavior of a given program is undecidable.

Here, “nontrivial” essentially means there are some programs that have the behavior in question, and others that do
not.36

As an example, let’s consider the question of whether a given Turing machine, when run on a given input 𝑥, ever writes
the symbol 1 to its tape. The language is defined as follows:

𝐿WritesOne = {(⟨𝑀⟩, 𝑥) : 𝑀 is a Turing machine and 𝑀(𝑥) writes a 1 to its tape at some point} .

This language is not in the form required by our formulation of Rice’s theorem, both because the membership condition
is not determined by𝐿(𝑀), and because the input has an extra argument 𝑥. However, we can show that it is undecidable
via reduction, by proving that 𝐿HALT ≤𝑇 𝐿WritesOne. That is, given an oracle 𝑊 that decides 𝐿WritesOne, we can construct
a Turing machine 𝐻 that decides 𝐿HALT.

36 The behavior in question must be concerned with program meaning, or semantics, and it must be robust with respect to semantics-preserving
transformations. For instance, a question like, “Does the program halt in less than a thousand steps?” is not about the program’s meaning, and the
answer is different for different programs that have identical semantics, so the question is not robust.

13.1. Rice’s Theorem and Program Analysis 133

Foundations of Computer Science, Release 0.5

First, given any Turing machine 𝑀 , we can construct a new machine 𝑀 ′ having the property that 𝑀 ′ writes a 1 to
its tape if and only if 𝑀 halts (when 𝑀 and 𝑀 ′ are run on the same input). Start by introducing a new symbol 1̂ to
the tape alphabet of 𝑀 ′, and modifying the transition function so that it interprets both 1 and 1̂ as 1 when reading
from the tape, but it always writes 1̂ instead of 1. (This distinction is needed because the input string may have 1s
in it.) Then, replace 𝑞acc and 𝑞rej with new states 𝑞′𝑎 and 𝑞′𝑟, add new accept/reject states 𝑞′acc/𝑞′rej, and include the
transitions 𝛿(𝑞′𝑎, 𝛾) = (𝑞′acc, 1, 𝑅) and 𝛿(𝑞′𝑟, 𝛾) = (𝑞′rej, 1, 𝑅) for all 𝛾 in the modified tape alphabet. For any input 𝑥,
by construction, 𝑀 ′(𝑥) reaches 𝑞′𝑎 or 𝑞′𝑟 if and only if 𝑀(𝑥) halts, then 𝑀 ′(𝑥) writes a 1 in the next step, and this is
the only way for 𝑀 ′(𝑥) to write a 1. Thus, 𝑀 ′(𝑥) writes a 1 if and only if 𝑀(𝑥) halts.

Using the above transformation, we define the reduction 𝐻 as follows:

function 𝐻(⟨𝑀⟩, 𝑥) construct 𝑀 ′ from 𝑀 as described above
return 𝑊 (⟨𝑀 ′⟩, 𝑥)

Clearly, 𝐻 halts on any input. And since 𝑀 ′(𝑥) writes a 1 if and only if 𝑀(𝑥) halts, 𝑊 accepts (⟨𝑀 ′⟩, 𝑥) if and only
if (⟨𝑀⟩, 𝑥) ∈ 𝐿HALT. So, 𝐻 decides 𝐿HALT, as needed.

A similar reduction exists for any nontrivial question about program behavior, for any Turing-complete language. (We
need the language to be Turing-complete because the reduction embeds an arbitrary Turing machine into a program
in that language.) The implication is that there is no algorithm that does perfect program analysis; any such analysis
produces the wrong result (or no result at all) for some nonempty set of inputs.

Soundness and Completeness

Suppose we wish to analyze a given program for some nontrivial program behavior 𝐵. Define the language

𝐿𝐵 = {⟨𝑀⟩ : 𝑀 has behavior 𝐵} .

We might hope for an analysis algorithm 𝐴 having the following properties:

• if ⟨𝑀⟩ ∈ 𝐿𝐵 , then 𝐴 accepts ⟨𝑀⟩;
• if ⟨𝑀⟩ /∈ 𝐿𝐵 , then 𝐴 rejects ⟨𝑀⟩.

Unfortunately, we have seen that such an algorithm does not exist, because 𝐿𝐵 is undecidable. We must settle for
an imperfect analysis. We have several choices:

• A complete analysis accepts all inputs that have the behavior 𝐵 (i.e., those in 𝐿𝐵), but also may accept or loop
on some that do not have behavior 𝐵. That is, a complete analysis 𝐴𝐶 satisfies:

– if ⟨𝑀⟩ ∈ 𝐿𝐵 , then 𝐴𝐶(⟨𝑀⟩) accepts;

– for ⟨𝑀⟩ /∈ 𝐿𝐵 , there is no general guarantee about what 𝐴𝐶(⟨𝑀⟩) does—it may accept, reject, or loop.

So, if a complete analysis rejects a program, then the program is guaranteed not to have the behavior 𝐵. But
if the analysis accepts the program, it may or may not have behavior 𝐵. (And in general, we cannot detect if
the analysis loops on a program.)

Observe that the following analysis is complete, but useless: ignore the program and just accept. In order to be
useful, a complete analysis will usually have some guarantee that it rejects any program from some important
subclass of those that do not have behavior 𝐵 (but not all such programs).

• A sound analysis rejects all inputs that do not have behavior 𝐵 (i.e., those not in 𝐿𝐵), but also may reject or
loop on some that do have behavior 𝐵. That is, a sound analysis 𝐴𝑆 satisfies:

– for ⟨𝑀⟩ ∈ 𝐿𝐵 , there is no general guarantee on what 𝐴(⟨𝑀⟩) does—it may accept, reject, or loop;

– if ⟨𝑀⟩ /∈ 𝐿𝐵 , then 𝐴𝑆(⟨𝑀⟩) rejects.

13.1. Rice’s Theorem and Program Analysis 134

Foundations of Computer Science, Release 0.5

So, if a sound analysis accepts a program, then the program is guaranteed to have the behavior 𝐵. But if the
analysis rejects the program, it may or may not have behavior 𝐵.

Observe that the following analysis is sound, but useless: ignore the program and just reject. In order to be
useful, a sound analysis will usually have some guarantee that it accepts any program from some important
subclass of those that have behavior 𝐵 (but not all such programs).

• An analysis that is both incomplete and unsound might answer incorrectly on any input program, regardless
of whether the program has behavior 𝐵. So, the output of the analysis does not guarantee anything about the
program’s behavior.

Because an incomplete and unsound analysis comes with no guarantees about its output in any case, we typically
design analyses that are either complete or sound (but not both).

A type system is a concrete example of a program analysis, and the usual choice for static type systems is to use a
sound analysis, rather than a complete one. This means that if the compiler accepts a program, we are guaranteed
that the program will not have a type error at runtime—it is “safe”. However, the compiler does reject some programs
that are free of runtime type errors. The burden is on the programmer to write their program in such a way that the
compiler can guarantee it is “safe”. Often, the compiler can provide some useful guarantee that it will accept any
“safe” program from some broad class.

13.1. Rice’s Theorem and Program Analysis 135

Part III

Complexity

136

CHAPTER

FOURTEEN

INTRODUCTION TO COMPLEXITY

In the previous unit, we considered which computational problems are solvable by algorithms, without any constraints
on the time and memory used by the algorithm. We saw that even with unlimited resources, many problems—indeed,
“most” problems—are not solvable by any algorithm.

In this unit on computational complexity, we consider problems that are solvable by algorithms, and focus on how
efficiently they can be solved. Primarily, we will be concerned how much time it takes to solve a problem.37 We mainly
focus on decision problems—i.e., languages—then later broaden our treatment to functional—i.e., search—problems.

A Turing machine’s running time, also known as time complexity, is the number of steps it takes until it halts; similarly,
its space complexity is the number of tape cells it uses. We focus primarily on time complexity, and as previously
discussed (page 3), we are interested in the asymptotic complexity with respect to the input size, in the worst case. For
any particular asymptotic bound 𝑂(𝑡(𝑛)), we define the set of languages that are decidable by Turing machines having
time complexity 𝑂(𝑡(𝑛)), where 𝑛 is the input size:

Definition 136 (DTIME) Define

DTIME(𝑡(𝑛)) = {𝐿 ⊆ Σ* : 𝐿 is decided by some Turing machine with time complexity 𝑂(𝑡(𝑛))} .

The set DTIME(𝑡(𝑛)) is an example of a complexity class: a set of languages whose complexity in some metric of
interest is bounded in some specified way. Concrete examples include DTIME(𝑛), the class of languages that are
decidable by Turing machines that run in (at most) linear 𝑂(𝑛) time; and DTIME(𝑛2), the class of languages decidable
by quadratic-time Turing machines.

When we discussed computability, we defined two classes of languages: the decidable languages (also called recursive),
denoted by R, and the recognizable languages (also called recursively enumerable), denoted by RE. The definitions of
these two classes are actually model-independent: they contain the same languages, regardless of whether our compu-
tational model is Turing machines, lambda calculus, or some other sensible model, as long as it is Turing-equivalent.

Unfortunately, this kind of model independence does not extend to DTIME(𝑡(𝑛)). Consider the concrete language

PALINDROME = {𝑥 : 𝑥 = 𝑥𝑅, i.e., 𝑥 equals its reversal} .

In a computational model with random-access memory, or even in the two-tape Turing-machine model, PALINDROME
can be decided in linear 𝑂(𝑛) time, where 𝑛 = |𝑥|: just walk pointers inward from both ends of the input, comparing
character by character.

However, in the standard one-tape Turing-machine model, it can be proved that there is no 𝑂(𝑛)-time algorithm for
PALINDROME; in fact, it requires Ω(𝑛2) time to decide. Essentially, the issue is that an algorithm to decide this
language would need to compare the first and last symbols of 𝑥, which requires moving the head sequentially over the
entire string, and do similarly for second and second-to-last symbols of 𝑥, and so on. Because 𝑛/4 of the pairs require

37 More generally, the field of computational complexity is concerned with quantifying all kinds of different resources, like time, memory, random-
ness, etc.; and with understanding various kinds of computational models, like Turing machines, branching programs, formulas, nondeterminism,
interaction, etc.

137

Foundations of Computer Science, Release 0.5

moving the head by at least 𝑛/2 cells each, this results in a total running time of Ω(𝑛2).38 So, PALINDROME /∈
DTIME(𝑛), but in other computational models, PALINDROME can be decided in 𝑂(𝑛) time.

A model-dependent complexity class is very inconvenient, because we wish to analyze algorithms at a higher level of
abstraction, without worrying about the details of the underlying computational model, or how the algorithm would be
implemented on it, like the particulars of data structures (which can affect asymptotic running times).

14.1 Polynomial Time and the Class P

We wish to define a complexity class that captures all problems that can be solved “efficiently”, and is also model-
independent. As a step toward this goal, we note that there is an enormous qualitative difference between the growth
of polynomial functions versus exponential functions. The following illustrates how several polynomials in 𝑛 compare
to the exponential function 2𝑛:

1E+00
1E+04
1E+08
1E+12
1E+16
1E+20
1E+24
1E+28
1E+32
1E+36
1E+40
1E+44
1E+48
1E+52
1E+56
1E+60

0 20 40 60 80 100 120 140 160 180 200

Polynomial vs. Exponential Growth

n n² n³ n¹⁰ 2ⁿ

The vertical axis in this plot is logarithmic, so that the growth of 2𝑛 appears as a straight line. Observe that even
a polynomial with a fairly large exponent, like 𝑛10, grows much slower than 2𝑛 (except for small 𝑛), with the latter
exceeding the former for all 𝑛 ≥ 60.

In addition to the dramatic difference in growth between polynomials and exponentials, we also observe that polyno-
mials have nice closure properties: if 𝑓(𝑛), 𝑔(𝑛) are polynomially bounded, i.e., 𝑓(𝑛) = 𝑂(𝑛𝑐) and 𝑔(𝑛) = 𝑂(𝑛𝑐′)

38 We caution that the above is not a proof that deciding PALINDROME requires Ω(𝑛2) time on a standard Turing machine. A correct proof
would need to consider all Turing machines, even ones that use very clever strategies we might not be able to imagine. Such a proof is known, though
it is quite subtle.

14.1. Polynomial Time and the Class P 138

Foundations of Computer Science, Release 0.5

for some constants 𝑐, 𝑐′, then

𝑓(𝑛) + 𝑔(𝑛) = 𝑂(𝑛max{𝑐,𝑐′}),

𝑓(𝑛) · 𝑔(𝑛) = 𝑂(𝑛𝑐+𝑐′),

𝑓(𝑔(𝑛)) = 𝑂(𝑛𝑐·𝑐′)

are polynomially bounded as well, because max{𝑐, 𝑐′}, 𝑐+ 𝑐′, and 𝑐 · 𝑐′ are constants. These facts can be used to prove
that if we compose a polynomial-time algorithm that uses some subroutine with a polynomial-time implementation of
that subroutine, then the resulting full algorithm is also polynomial time. This composition property allows us to obtain
polynomial-time algorithms in a modular way, by designing and analyzing individual components in isolation.

Thanks to the above properties of polynomials, it has been shown that the notion of polynomial-time computation is
“robust” across many popular computational models, like the many variants of Turing machines, lambda calculi, etc.
That is, any of these models can simulate any other one with only polynomial “slowdown”. So, any particular problem
is solvable in polynomial time either in all such models, or in none of them.

The above considerations lead us to define “efficient” to mean “polynomial time (in the input size)”. From this we get
the following model-independent complexity class of languages that are decidable in polynomial time (across many
models of computation).

Definition 137 (Complexity Class P) The complexity class P is defined as

P =
⋃︁
𝑘≥1

DTIME(𝑛𝑘)

= {𝐿 : 𝐿 is decided by some polynomial-time TM } .

In other words, a language 𝐿 ∈ P if it is decided by some Turing machine that runs in time 𝑂(𝑛𝑘) for some
constant 𝑘.

In brief, P is the class of “efficiently decidable” languages. Based on what we saw in the algorithms unit, this class
includes many fundamental problems of interest, like the decision versions of the greatest common divisor problem,
sorting, the longest increasing subsequence problem, etc. Note that sinceP is a class of languages, or decision problems,
it technically does not include the search versions of these problems—but see below for the close relationship between
search and decision.

As a final remark, the extended Church-Turing thesis posits that the notion of polynomial-time computation is “robust”
across all realistic models of computation:

Theorem 138 (Extended Church-Turing Thesis) A problem is solvable in polynomial time on a Turing machine
if and only if it is solvable in polynomial time in any “realistic” model of computation.

Because “realistic” is not precisely defined, this is just a thesis, not a statement than can be proved. Indeed, this is a
major strengthening of the standard Church-Turing thesis, and there is no strong agreement about whether it is even
true! In particular, the model of quantum computation may pose a serious challenge to this thesis: it is known that
polynomial-time quantum algorithms exist for certain problems, like factoring integers into their prime divisors, that
we do not know how to solve in polynomial time on Turing machines! So, if quantum computation is “realistic”, and if
there really is no polynomial-time factoring algorithm in the TM model, then the extended Church-Turing thesis is false.
While both of these hypotheses seem plausible, they are still uncertain at this time: real devices that can implement
the full model of quantum computation have not yet been built, and we do not have any proof that factoring integers
(or any other problem that quantum computers can solve in polynomial time) requires more than polynomial time on a
Turing machine.

14.1. Polynomial Time and the Class P 139

Foundations of Computer Science, Release 0.5

14.2 Examples of Efficient Verification

For some computational problems, it is possible to efficiently verify whether a claimed solution is actually cor-
rect—regardless of whether computing a correct solution “from scratch” can be done efficiently. Examples of this
phenomenon are abundant in everyday life, and include:

• Logic and word puzzles like mazes, Sudoku, or crosswords: these come in various degrees of difficulty to
solve, some quite challenging. But given a proposed solution, it is straightforward to check whether it satisfies
the “rules” of the puzzle. (See below for a detailed example with mazes.)

• Homework problems that ask for correct software code (with justification) or mathematical proofs: producing
a good solution might require a lot of effort and creativity to discover the right insights. But given a candidate
solution, one can check relatively easily whether it is clear and correct, simply by applying the rules of logic.
For example, to verify a claimed mathematical proof, we just need to check whether each step follows logically
from the hypotheses and the previous steps, and that the proof reaches the desired conclusion.

• Music, writing, video, and other media: creating a high-quality song, book, movie, etc. might require a lot
of creativity, effort, and expertise. But given such a piece of media, it is relatively easy for even a non-expert
to decide whether it is engaging and worthwhile to them (even though this is a subjective judgment that may
vary from person to person). For example, even though the authors of this text could not come close to writing
a beautiful symphony or a hit pop song, we easily know one when we hear one.

As a detailed example, consider the following maze, courtesy of Kees Meijer’s maze generator39:

At first glance, it is not clear whether this maze has a solution. However, suppose that someone—perhaps a very good
solver of mazes, or the person who constructed the maze—were to claim that this maze is indeed solvable. Is there
some way that they could convince us of this fact?

A natural idea is simply to provide us with a path through the maze as “proof” of the claim. It is easy for us to check
that this proof is valid, by verifying that the path goes from start to finish without crossing any “wall” of the maze. By
definition, any solvable maze has such a path, so it is possible to convince us that a solvable maze really is solvable.

39 https://keesiemeijer.github.io/maze-generator/

14.2. Examples of Efficient Verification 140

https://keesiemeijer.github.io/maze-generator/

Foundations of Computer Science, Release 0.5

On the other hand, suppose that a given maze does not have a solution. Then no matter what claimed “proof” someone
might give us, the checks we perform will cause us to reject it: because the maze is not solvable, any path must either
fail to go from start to finish, or cross a wall somewhere (or both).

In summary: for any given maze, checking that a claimed solution goes from start to finish without crossing any wall
is an efficient verification procedure:

• The checks can be performed efficiently, i.e., in polynomial time in the size of the maze.

• If the maze is solvable, then there exists a “proof”—namely, a path through the maze from start to finish—that
the procedure will accept. How to find such a proof is not the verifier’s concern; all that matters is that it exists.40

• If the maze is not solvable, then no claimed “proof” will satisfy the procedure.

Observe that we need both of the last two conditions in order for the procedure to be considered a correct verifier:

• An “overly skeptical” verifier that cannot be “convinced” by anything, even though the maze is actually solvable,
would not be correct.

• Similarly, an “overly credulous” verifier that can be “fooled” into accepting, even when the maze is not solvable,
would also be incorrect.

As already argued, our verification procedure has the right balance of “skepticism” and “credulity”.

As another example, the traveling salesperson problem (TSP) is the task of finding a minimum-weight tour of a given
weighted graph. In this text, a “tour” of a graph is a cycle that visits every vertex exactly once, i.e., it is a path that
visits every vertex and then immediately returns to its starting vertex. (Beware that some texts define “tour” slightly
differently.) Without loss of generality, for TSP we can assume that the graph is complete—i.e., there is an edge between
every pair of vertices—by filling in any missing edges with edges of enormous (or infinite) weight. This does not affect

40 The reader might have noticed that for any given maze, it is actually possible to use a graph-search algorithm like BFS or DFS to find a solution
efficiently, when one exists. So, MAZE is even efficiently decidable, i.e.,MAZE ∈ P. This does not contradict anything written above about MAZE
also being efficiently verifiable. However, it does give us an alternative efficient verifier for MAZE, which just ignores the provided “proof” and
determines on its own whether the given maze is solvable. This verifier trivially meets all the efficiency and correctness conditions we have laid out.

14.2. Examples of Efficient Verification 141

Foundations of Computer Science, Release 0.5

the solution(s), because any tour that uses any of these new edges will have larger weight than any tour that does not
use any of them.

Suppose we are interested in a minimum-weight tour of the following graph:

A

C

B

D

19
18

2

27

11

29

If someone were to claim that the path 𝐴 → 𝐵 → 𝐷 → 𝐶 → 𝐴 is a minimum-weight tour, could we efficiently verify
that this is true? There doesn’t seem to be an obvious way to do so, apart from considering all other tours and checking
whether any of them have smaller weight. While this particular graph only has three distinct tours (ignoring reversals
and different starting points on the same cycle), in general, the number of tours in a graph is exponential in the number
of vertices, so this approach would not be efficient. So, it is not clear whether we can efficiently verify that a claimed
minimum-weight tour really is one.

However, let’s modify the problem to be a decision problem, which simply asks whether there is a tour whose total
weight is within some specified “budget”:

Given a weighted graph 𝐺 and a budget 𝑘, does 𝐺 have a tour of weight at most 𝑘?

Can the existence of such a tour be proved to an efficient, suitably skeptical verifier? Yes: simply provide such a tour
as the proof. The verifier, given a path in 𝐺—i.e., a list of vertices—that is claimed to be such a tour, would check that
all of the following hold:

1. the path starts and ends at the same vertex,

2. the path visits every vertex in the graph exactly once (except for the repeated start vertex at the end), and

3. the sum of the weights of the edges on the path is at most 𝑘.

(All of these tests can be performed efficiently; see the formalization in Algorithm 144 below for details.)

For example, consider the following claimed “proofs” that the above graph has a tour that is within budget 𝑘 = 60:

• The path 𝐴 → 𝐵 → 𝐷 → 𝐶 does not start and end at the same vertex, so the verifier’s first check would reject
it as invalid.

• The path 𝐴 → 𝐵 → 𝐷 → 𝐴 starts and ends at the same vertex, but it does not visit vertex 𝐶, so the verifier’s
second check would reject it.

• The path 𝐴 → 𝐵 → 𝐷 → 𝐶 → 𝐴 satisfies the first two checks, but it has total weight 61, which is not within
the budget, so the verifier’s third check would reject it.

• The path 𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐴 satisfies the first two checks, and its total weight of 58 is within the budget,
so the verifier would accept it.

These examples illustrate that when the graph has a tour that is within the budget, there are still “proofs” that are
“unconvincing” to the verifier—but there will also be a “convincing” proof, which is what matters to us.

14.2. Examples of Efficient Verification 142

Foundations of Computer Science, Release 0.5

On the other hand, it turns out that the above graph does not have a tour that is within a budget of 𝑘 = 57. And for this
graph and budget, the verifier will reject no matter what claimed “proof” it is given. This is because every tour in the
graph—i.e., every path that would pass the verifier’s first two checks—has total weight at least 58.

In general, for any given graph and budget, the above-described verification procedure is correct:

• If there is a tour of the graph that is within the budget, then there exists a “proof”—namely, such a tour itself—that
the procedure will accept. (As before, how to find such a proof is not the verifier’s concern.)

• If there is no such tour, then no claimed “proof” will satisfy the procedure, i.e., it cannot be “fooled” into accept-
ing.

14.3 Efficient Verifiers and the Class NP

We now generalize the above examples to formally define the notion of “efficient verification” for an arbitrary decision
problem, i.e., a language. This definition captures the notion of an efficient procedure that can be “convinced”—by a
suitable “proof”—to accept any string in the language, but cannot be “fooled” into accepting a string that is not in the
language.

Definition 139 (Efficient Verifier) An efficient verifier for a language 𝐿 is a Turing machine 𝑉 (𝑥, 𝑐) that takes
two inputs, an instance 𝑥 and a certificate (or “claimed proof”) 𝑐 whose size |𝑐| is polynomial in |𝑥|, and satisfies
the following properties:

• Efficiency: 𝑉 (𝑥, 𝑐) runs in time polynomial in its input size.41

• Completeness: if 𝑥 ∈ 𝐿, then there exists some 𝑐 for which 𝑉 (𝑥, 𝑐) accepts.

• Soundness: if 𝑥 /∈ 𝐿, then for all 𝑐, 𝑉 (𝑥, 𝑐) rejects.

Alternatively, completeness and soundness together are equivalent to the following property (which is often more
natural to prove for specific verifiers):

• Correctness: 𝑥 ∈ 𝐿 if and only if there exists some 𝑐 (of size polynomial in |𝑥|) for which 𝑉 (𝑥, 𝑐) accepts.

We say that a language is efficiently verifiable if there is an efficient verifier for it.
41 Notice that polynomial in the size of (𝑥, 𝑐) is equivalent to polynomial in the size of 𝑥 alone, because |𝑐| is polynomial in |𝑥|.

The claimed equivalence can be seen by taking the contrapositive of the soundness condition, which is: if there exists
some 𝑐 for which 𝑉 (𝑥, 𝑐) accepts, then 𝑥 ∈ 𝐿. (Recall that when negating a predicate, “for all” becomes “there
exists”, and vice-versa.) This contrapositive statement and completeness are, respectively, the “if” and “only if” parts
of correctness.

We sometimes say that a certificate 𝑐 is “valid” or “invalid” for a given instance 𝑥 if 𝑉 (𝑥, 𝑐) accepts or rejects, respec-
tively. Note that the decision of the verifier is what determines whether a certificate is “(in)valid”—not the other way
around—and that the validity of a certificate depends on both the instance and the verifier. There can be many different
verifiers for the same language, which in general can make different decisions on the same 𝑥, 𝑐 (though they all must
reject when 𝑥 /∈ 𝐿).

In general, the instance𝑥 and certificate 𝑐 are arbitrary strings over the verifier’s input alphabetΣ (and they are separated
on the tape by some special character that is not in Σ, but is in the tape alphabet Γ). However, for specific languages,
𝑥 and 𝑐 will typically represent various mathematical objects like integers, arrays, graphs, vertices, etc. As in the
computability unit, this is done via appropriate encodings of the objects, denoted by ⟨·⟩, where without loss of generality
every string decodes as some object of the desired “type” (e.g., integer, list of vertices, etc.). Therefore, when we write
the pseudocode for a verifier, we can treat the instance and certificate as already having the desired types.

14.3. Efficient Verifiers and the Class NP 143

Foundations of Computer Science, Release 0.5

14.3.1 Discussion of Completeness and Soundness

We point out some of the important aspects of completeness and soundness (or together, correctness) in Definition 139.

1. Notice some similarities and differences between the notions of verifier and decider (Definition 61):

• When the input 𝑥 ∈ 𝐿, both kinds of machine must accept, but a verifier need only accept for some value
of the certificate 𝑐, and may reject for others. By contrast, a decider does not get any other input besides 𝑥,
and simply must accept it.

• When the input 𝑥 /∈ 𝐿, both kinds of machine must reject, and moreover, a verifier must reject for all values
of 𝑐.

2. There is an asymmetry between the definitions of completeness and soundness:

• If a (sound) verifier for language 𝐿 accepts some input (𝑥, 𝑐), then we can correctly conclude that 𝑥 ∈ 𝐿,
by the contrapositive of soundness. (A sound verifier cannot be “fooled” into accepting an instance that is
not in the language.)

• However, if a (complete) verifier for 𝐿 rejects some input (𝑥, 𝑐), then in general we cannot reach any
conclusion about whether 𝑥 ∈ 𝐿: it might be that 𝑥 /∈ 𝐿, or it might be that 𝑥 ∈ 𝐿 but 𝑐 is just not a valid
certificate for 𝑥. (In the latter case, by completeness, some other certificate 𝑐′ is valid for 𝑥.)

In summary, while every string 𝑥 ∈ 𝐿 has a “convincing proof” of its membership in 𝐿, a string 𝑥 /∈ 𝐿 does not
necessarily have a proof of its non-membership in 𝐿.

14.3.2 Discussion of Efficiency

We also highlight some important but subtle aspects of the notion of efficiency from Definition 139.

1. First, we restrict certificates 𝑐 to have size that is some polynomial in the size of the instance 𝑥, i.e., |𝑐| = 𝑂(|𝑥|𝑘)
for some constant 𝑘. The specific polynomial can depend on the verifier, but the same polynomial bounds the
certificate size for all instances of the language. We make this restriction because we want verification to be
efficient in every respect. It would not make sense to allow certificates to be (say) exponentially long in the
instance size, since even reading such a long certificate should not be considered “efficient.”

We emphasize that merely requiring the verifier to have polynomial running time (in the size of the input) would
not prohibit such pathological behavior. This is because the verifier’s input is both the instance 𝑥 and certificate
𝑐. For example, consider a certificate that consists of all the exponentially many tours in a graph. The verifier
could check all of them in time linear in the certificate size, and hence linear in the size of its input. But this is
not efficient in the sense we want, because it takes exponential time in the size of the graph.

2. With the above in mind, an equivalent definition of verifier efficiency, without any explicit restriction on the
certificate size, is “running time polynomial in the size of the instance 𝑥 alone”—not the entire input 𝑥, 𝑐. Such
a verifier can read only polynomially many of the initial symbols of 𝑐, because reading each symbol and moving
the head takes a computational step. So, the rest of the certificate (if any) is irrelevant, and can be truncated
without affecting the verifier’s behavior. Therefore, we can assume without loss of generality that the certificate
size is polynomial in the size of the instance 𝑥, as we do in Definition 139 above.

14.3. Efficient Verifiers and the Class NP 144

Foundations of Computer Science, Release 0.5

14.3.3 The Class NP

With the notion of an efficient verifier in hand, analogously to how we defined P as the class of efficiently decidable
languages, we define NP as the class of efficiently verifiable languages.

Definition 140 (Complexity Class NP) The complexity class NP is defined as the set of efficiently verifiable
languages:

NP = {𝐿 : 𝐿 is efficiently verifiable} .

In other words, a language 𝐿 ∈ NP if there is an efficient verifier for it, according to Definition 139.42

42 We caution that NP does not stand for “not polynomial”. It is an abbreviation of the name “nondeterministic polynomial,” which comes
from an equivalent definition of the class based on the computational model of nondeterministic Turing machines. (This model is beyond the
scope of this text.) A possible alternative name would be VP, for “verifiable in polynomial time”.

Let us now formalize our first example of efficient verification from above: the decision problem of determining whether
a given maze has a solution. A maze can be represented as an undirected graph, with a vertex for each “intersection”
in the maze (along with the start and end points), and edges between adjacent positions. So, the decision problem is
to determine whether, given such a graph, there exists a path from the start vertex 𝑠 to the end vertex 𝑡. This can be
represented as the language43

MAZE = {(𝐺, 𝑠, 𝑡) : 𝐺 is an undirected graph that has a path from vertices 𝑠 to 𝑡} .

We define an efficient verifier for MAZE as follows; the precise pseudocode is given in Algorithm 141. An instance
is a graph 𝐺 = (𝑉,𝐸), a start vertex 𝑠, and a target vertex 𝑡. A certificate is a sequence of up to |𝑉 | vertices in the
graph. (This limit on the number of vertices in the certificate can be enforced by the decoding, and it ensures that the
certificate size is polynomial in the instance size; see the Discussion of Efficiency (page 144).) The verifier checks that
the sequence describes a valid path in the graph from 𝑠 to 𝑡, i.e., that the first and last vertices in the sequence are 𝑠 and
𝑡 (respectively), and that there is an edge between every pair of consecutive vertices in the sequence.

Algorithm 141 (Efficient Verifier for MAZE)

Input: instance: a graph and start/end vertices; certificate: a list of up to |𝑉 | vertices
Output: whether the certificate represents a path in the graph from the start to the end

function VerifyMAZE((𝐺 = (𝑉,𝐸), 𝑠, 𝑡), 𝑐 = (𝑣1, . . . 𝑣𝑚))
if 𝑣1 ̸= 𝑠 or 𝑣𝑚 ̸= 𝑡 then reject
for 𝑖 = 1 to 𝑚− 1 do

if (𝑣𝑖, 𝑣𝑖+1) /∈ 𝐸 then reject
accept

Lemma 142 VerifyMAZE is an efficient verifier for MAZE, so MAZE ∈ NP.

Proof 143 We show that VerifyMAZE satisfies Definition 139 by showing that it is efficient and correct.

First, VerifyMAZE runs in time polynomial in the size |𝐺| ≥ |𝑉 | of the graph: it compares two vertices from
the certificate against the start and end vertices in the instance, and checks whether there is an edge between up
to |𝑉 | − 1 pairs of consecutive vertices in the certificate. Each pair of vertices can be checked in polynomial
time. The exact polynomial depends on the representation of 𝐺 and the underlying computational model, but it is
polynomial in any reasonable representation (e.g., adjacency lists, adjacency matrix), which is all that matters for
our purposes here.

As for correctness:

43 Henceforth, for notational simplicity we will omit the encoding of inputs (e.g., ⟨𝐺, 𝑠, 𝑡⟩) when defining languages, taking it to be implicit.

14.3. Efficient Verifiers and the Class NP 145

Foundations of Computer Science, Release 0.5

• If (𝐺, 𝑠, 𝑡) ∈ MAZE, then by definition there is some path 𝑠 = 𝑣1 → 𝑣2 → · · · → 𝑣𝑚−1 → 𝑣𝑚 = 𝑡 in 𝐺
that visits 𝑚 ≤ |𝑉 | vertices in total, because any cycle in the path can be removed. Then by inspection of
the pseudocode, VerifyMAZE((𝐺, 𝑠, 𝑡), 𝑐 = (𝑣1, 𝑣2, . . . , 𝑣𝑚)) accepts.

• Conversely, if VerifyMAZE((𝐺, 𝑠, 𝑡), 𝑐 = (𝑣1, . . . , 𝑣𝑚)) accepts for some certificate 𝑐, then by inspection
of the pseudocode, 𝑐 represents a path from 𝑣1 = 𝑠 to 𝑣𝑚 = 𝑡 in 𝐺, so (𝐺, 𝑠, 𝑡) ∈ MAZE by definition.

Alternatively, instead of showing the “conversely” part of correctness as above, we could have argued that Verify-
MAZE is sound, as follows: if (𝐺, 𝑠, 𝑡) /∈ MAZE, then by definition there is no path between 𝑠 and 𝑡 in 𝐺, so any
certificate 𝑐 will either not start at 𝑠, not end at 𝑡, or it will have some pair of consecutive vertices with no edge between
them. Thus, by inspection of the pseudocode, VerifyMAZE((𝐺, 𝑠, 𝑡), 𝑐) will reject.

This kind of reasoning is correct, but it is more cumbersome and error prone, since it involves more cases and argues
about the non-existence of certain objects. Usually, and especially for more complex verifiers, it is easier and more
natural to directly prove the correctness condition (𝑥 ∈ 𝐿 if and only if there exists 𝑐 such that 𝑉 (𝑥, 𝑐) accepts) instead
of soundness.

Next, returning to the “limited-budget” TSP example, we define the corresponding language

TSP = {(𝐺, 𝑘) : 𝐺 is a weighted graph that has a tour of total weight at most 𝑘} .

A certificate for a given instance (𝐺 = (𝑉,𝐸), 𝑘) is a sequence of up to |𝑉 | vertices in the graph. The verifier simply
checks that the vertices form a tour whose cost is at most 𝑘. The precise pseudocode is given in Algorithm 144.

Algorithm 144 (Efficient Verifier for TSP)

Input: instance: weighted graph and weight budget; certificate: a list of up to |𝑉 | vertices in the graph
Output: whether the certificate represents a tour within the budget

function VerifyTSP((𝐺 = (𝑉,𝐸,𝑤), 𝑘), 𝑐 = (𝑣0, 𝑣1, . . . , 𝑣𝑚))
if 𝑚 ̸= |𝑉 | or 𝑣0 ̸= 𝑣𝑚 then reject
if 𝑣𝑖 = 𝑣𝑗 for some distinct 1 ≤ 𝑖, 𝑗 ≤ 𝑚 then reject
𝑡 = 0
for 𝑖 = 0 to 𝑚− 1 do ◁ sum the edge weights on the tour

𝑡 = 𝑡+ 𝑤(𝑣𝑖, 𝑣𝑖+1)

if 𝑡 > 𝑘 then reject
accept

Lemma 145 VerifyTSP is an efficient verifier for TSP, so TSP ∈ NP.

Proof 146 We show that VerifyTSP satisfies Definition 139 by showing that it is efficient and correct.

First, VerifyTSP runs in time polynomial in the size |𝐺, 𝑘| of the instance: checking for duplicate vertices 𝑣𝑖, 𝑣𝑗
can be done in polynomial time, e.g., by checking all 𝑂(𝑚2) = 𝑂(|𝑉 |2) pairs of distinct 1 ≤ 𝑖, 𝑗 ≤ 𝑚. Then the
algorithm loops over |𝑉 | edges, summing their weights. These weights are included in the input instance, so they
can be summed in polynomial time in the instance size. Finally, the algorithm compares the sum against 𝑘, which
can be done in polynomial time.

We now argue correctness:

• If (𝐺, 𝑘) ∈ TSP, then by definition, 𝐺 has a tour of weight at most 𝑘. Let 𝑐 be the sequence of |𝑉 | + 1
vertices in such a tour, starting and ending at the same arbitrary vertex, which has size polynomial in |𝐺|.
By inspection, we see that VerifyTSP((𝐺, 𝑘), 𝑐) accepts, because all of 𝑉 ’s checks are satisfied by this 𝑐.

• Conversely, if VerifyTSP((𝐺, 𝑘), 𝑐) accepts for some 𝑐 = (𝑣0, . . . , 𝑣𝑚), then because all of 𝑉 ’s checks are
satisfied, this 𝑐 starts and ends at the same vertex 𝑣0 = 𝑣𝑚, it visits all |𝑉 | vertices exactly once (because
there are no duplicate vertices among 𝑣1, . . . , 𝑣𝑚), and the total weight of all 𝑚 edges between consecutive

14.3. Efficient Verifiers and the Class NP 146

Foundations of Computer Science, Release 0.5

vertices in 𝑐 is at most 𝑘. Therefore, 𝑐 is a tour of 𝐺 having total weight at most 𝑘, hence (𝐺, 𝑘) ∈ TSP, as
needed.

14.4 P Versus NP

We have defined two complexity classes:

• P is the class of languages that can be decided efficiently.

• NP is the class of languages that can be verified efficiently.

More precisely, a language 𝐿 ∈ P if there exists a polynomial-time algorithm 𝐷 such that:

• if 𝑥 ∈ 𝐿, then 𝐷(𝑥) accepts;

• if 𝑥 /∈ 𝐿, then 𝐷(𝑥) rejects.

Similarly, 𝐿 ∈ NP if there exists a polynomial-time algorithm 𝑉 such that:

• if 𝑥 ∈ 𝐿, then 𝑉 (𝑥, 𝑐) accepts for at least one (poly-sized) certificate 𝑐;

• if 𝑥 /∈ 𝐿, then 𝑉 (𝑥, 𝑐) rejects for all certificates 𝑐.

How are these two classes related? First, if a language is efficiently decidable, then it is also efficiently verifiable,
trivially: the verifier can just ignore the certificate, and determine on its own whether the input is in the language, using
the given efficient decider. (As an exercise, formalize this argument according to the definitions.) This gives us the
following result.

Lemma 147 P ⊆ NP.

The above relationship allows for two possibilities:

• P ⊊ NP, i.e., P is a proper subset of (hence not equal to) NP; or

• P = NP.

The latter possibility would mean that every efficiently verifiable problem is also efficiently decidable. Is this the case?
What is the answer to the question

Does P = NP ?

We do not know the answer to this question! Indeed, the “P versus NP” question is perhaps the greatest open problem
in Computer Science—and even one of the most important problems in all of Mathematics, as judged by the Clay
Mathematics Institute44, which has offered a $1 million prize for its resolution.

Consider the two example languages from above, MAZE and TSP. We saw that both are in NP, and indeed, they have
similar definitions, and their verifiers also have much in common. However, we know that MAZE ∈ P: it can be
decided efficiently simply by checking whether a breadth-first search from vertex 𝑠 reaches vertex 𝑡. On the other hand,
we do not know whether TSP is in P: we do not know of any efficient algorithm that decides TSP, and we do not know
how to prove that no such algorithm exists. Most experts believe that there is no efficient algorithm for TSP, which
would imply that P ̸= NP, but the community has no idea how to prove this.

How could we hope to resolve the P-versus-NP question? To show that the two classes are not equal, as most experts
believe, it would suffice to demonstrate that some single language is in NP, but is not in P. However, this seems exceed-
ingly difficult to do: we would need to somehow prove that, of all the infinitely many efficient algorithms—including
many we have not yet discovered and cannot even imagine—none of them decides the language in question.45 On

44 https://www.claymath.org/millennium-problems/
45 Recall that in the computability unit, we proved the existence of undecidable languages via techniques like diagonalization. Clearly, an unde-

cidable language cannot be decided efficiently, so it is not in P. However, the challenge here is that we seek a language that is not in P, but also is
in NP. It can be shown that every language in NP is decidable, so an undecidable language will not serve our purposes. More generally, known
techniques like diagonalization and several others have been shown to face fundamental obstacles for resolving P versus NP.

14.4. P Versus NP 147

https://www.claymath.org/millennium-problems/
https://www.claymath.org/millennium-problems/

Foundations of Computer Science, Release 0.5

the other hand, showing that P = NP also seems very difficult: we would need to demonstrate that every one of the
infinitely many languages in NP can be decided efficiently, i.e., by some polynomial-time algorithm.

Fortunately, a rich theory has been developed that will make the resolution of P versus NP (somewhat) simpler. As we
will see below, it is possible to prove that some languages in NP are the “hardest” ones in that class, in the following
sense:

an efficient algorithm for any one of these “hardest” languages would imply an efficient algorithm for every
language in NP!

So, to prove that P = NP, it would suffice to prove that just one of these “hardest” languages is in P. And in the
other direction, the most promising route to prove P ̸= NP is to show that one of these “hardest” languages is not in
P—because if some NP language is not in P, then the same goes for all these “hardest” languages in NP.

In summary, the resolution of theP-versus-NP question lies entirely with the common fate of these “hardest” languages:

• Any one of them has an efficient algorithm, if and only if all of them do, if and only if P = NP.

• Conversely, any one of them does not have an efficient algorithm, if and only if none of them do, if and only if
P ̸= NP.

It turns out that there are thousands of known “hardest” languages in NP. In fact, as we will see, TSP is one of them!
We will prove this via a series of results, starting with the historically first language that was shown to be one of the
“hardest” in NP, next.

14.4. P Versus NP 148

CHAPTER

FIFTEEN

SATISFIABILITY AND THE COOK-LEVIN THEOREM

Our first example of a “hardest” problem in NP is the satisfiability problem for Boolean formulas. Given as input a
Boolean formula like

𝜑 = (𝑦 ∨ (¬𝑥 ∧ 𝑧) ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑧) ,

we wish to determine whether there is a true/false assignment to its variables that makes the formula evaluate to true.
Let us define the relevant terms:

• a (Boolean) variable like 𝑥 or 𝑦 or 𝑥42 can be assigned the value “true” (often represented as 1) or “false”
(represented as 0);

• a literal is either a variable or its negation, e.g., 𝑥 or ¬𝑦;

• an operator is either conjunction (AND), represented as ∧; disjunction (OR), represented as ∨; or negation
(NOT), represented either as ¬ or with an overline, like ¬(𝑥 ∧ 𝑦) or, equivalently, 𝑥 ∧ 𝑦.

A Boolean formula is a well-formed mathematical expression involving literals combined with operators, and following
the usual rules of parentheses for grouping.

An initial observation is that using the rules of logic like De Morgan’s laws46, we can eliminate any double-negations,
and we can iteratively move all negations “inward” to the literals, e.g., ¬(𝑥 ∧ ¬𝑦) = (¬𝑥 ∨ 𝑦). So, from now on we
assume without loss of generality that the negation operator appears only in literals.

We define the size of a formula to be the number of literals it has, counting duplicate appearances of the same literal.47

For example, the formula 𝜑 above has size 6. Note that the size of a formula is at least the number of distinct variables
that appear in the formula.

An assignment is a mapping of the variables in a formula to truth values. We can represent an assignment over 𝑛
variables (under some fixed order) as an 𝑛-tuple, such as (𝑎1, . . . , 𝑎𝑛). For the above formula, the assignment (0, 1, 0)
maps 𝑥 to the value 0 (false), 𝑦 to the value 1 (true), and 𝑧 to the value 0 (false). The notation 𝜑(𝑎1, . . . , 𝑎𝑛) denotes the
value of 𝜑 when evaluated on the assignment (𝑎1, . . . , 𝑎𝑛), i.e., with each variable substituted by its assigned value.

(More generally, we can also consider a partial assignment, which maps a subset of the variables to truth values.
Evaluating a formula on a partial assignment is denoted like 𝜑(𝑥 = 0, 𝑦 = 1), which assigns 𝑥 to false and 𝑦 to true;
this yields another formula in the remaining variables.)

A satisfying assignment for a formula is an assignment that makes the formula evaluate to true. In the above example,
(0, 1, 0) is a satisfying assignment:

𝜑(0, 1, 0) = (1 ∨ (¬0 ∧ 0) ∨ ¬0) ∧ (¬0 ∨ 0)

= (1 ∨ (1 ∧ 0) ∨ 1) ∧ (1 ∨ 0)

= 1 ∧ 1

= 1 .
46 https://en.wikipedia.org/wiki/De_Morgan%27s_laws
47 Defining size as the number of literals is more robust and convenient than other definitions we might consider, like the total number of symbols

in the formula (including operators and parentheses), while still being proportional to other reasonable notions. For example, “moving negations
inward” does not change the number of literals, but it can change the number of symbols.

149

https://en.wikipedia.org/wiki/De_Morgan%27s_laws

Foundations of Computer Science, Release 0.5

On the other hand, (1, 0, 1) is not a satisfying assignment:

𝜑(1, 0, 1) = (0 ∨ (¬1 ∧ 1) ∨ ¬1) ∧ (¬1 ∨ 1)

= (0 ∨ (0 ∧ 1) ∨ 0) ∧ (0 ∨ 1)

= 0 ∧ 1

= 0 .

A formula 𝜑 is satisfiable if it has at least one satisfying assignment. The decision problem of determining whether a
given formula is satisfiable corresponds to the following language.

Definition 148 (Satisfiability Language) The (Boolean) satisfiability language is defined as

SAT = {𝜑 : 𝜑 is a satisfiable Boolean formula} .

A first observation is that SAT is decidable. A formula 𝜑 of size 𝑛 has at most 𝑛 variables, so there are at most 2𝑛
possible assignments. Therefore, we can decide SAT using a brute-force algorithm that simply iterates over all of
the assignments of its input formula, accepting if at least one of them satisfies the formula, and rejecting otherwise.
Although this is not efficient, it is apparent that it does decide SAT.

We also observe that SAT has an efficient verifier, so it is in NP.

Lemma 149 SAT ∈ NP.

Proof 150 A certificate, or “claimed proof”, for a formula 𝜑 is just an assignment for its variables. The following
efficient verifier simply evaluates the given formula on the given assignment and accepts if the value is true,
otherwise it rejects.

Input: instance: a Boolean formula; certificate: an assignment for its variables
Output: whether the assignment satisfies the formula

function 𝑉SAT(𝜑, 𝛼)
if 𝜑(𝛼) = 1 then accept
reject

For efficiency, first observe that the size of the certificate is polynomial (indeed, linear) in the size of the instance
𝜑, because it consists of a true/false value for each variable that appears in the formula. This verifier runs in linear
time in the size of its input formula 𝜑, because evaluating each AND/OR operator in the formula reduces the
number of terms in the expression by one.

For correctness, by the definitions of SAT and 𝑉SAT,

𝜑 ∈ SAT ⇐⇒ exists 𝛼 s.t. 𝜑(𝛼) = 1

⇐⇒ exists 𝛼 s.t. 𝑉SAT(𝜑, 𝛼) accepts ,

so by Definition 139, 𝑉SAT is indeed an efficient verifier for SAT, as claimed. □

Is SAT efficiently decidable?—i.e., is SAT ∈ P? The decider we described above is not efficient: it takes time expo-
nential in the number of variables in the formula, and the number of variables may be as large as the size of the formula
(i.e., the number of literals in it), so in the worst case the algorithm runs in exponential time in its input size.

However, the above does not prove that SAT /∈ P; it just shows that one specific (and naïve) algorithm for deciding
SAT is inefficient. Conceivably, there could be a more sophisticated efficient algorithm that cleverly analyzes an ar-
bitrary input formula in some way to determine whether it is satisfiable. Indeed, there are regular conferences48 and
competitions49 to which researchers submit their best ideas, algorithms, and software for solving SAT. Although many

48 http://satisfiability.org/
49 http://www.satcompetition.org/

150

http://satisfiability.org/
http://www.satcompetition.org/

Foundations of Computer Science, Release 0.5

algorithms have been developed that perform very impressively on large SAT instances of interest, none of them is
believed to run in polynomial time and to be correct on all instances.

To date, we actually do not know whether SAT is efficiently decidable—we do not know an efficient algorithm for it,
and we do not know how to prove that no such algorithm exists. Yet although the question of whether SAT ∈ P is
unresolved, the Cook-Levin Theorem says that SAT is a “hardest” problem in NP.50

Theorem 151 (Cook-Levin) If SAT ∈ P, then every NP language is in P, i.e., P = NP.

The full proof of the Cook-Levin Theorem is ingenious and rather intricate, but its high-level idea is fairly easy to
describe. Let 𝐿 be an arbitrary language in NP; this means there is an efficient verifier 𝑉 for 𝐿. Using the hypothesis
that SAT ∈ P, we will construct an efficient decider for 𝐿, which implies that 𝐿 ∈ P, as claimed.

The key idea behind the efficient decider for 𝐿 is that, using just the fact that 𝑉 is an efficient verifier for 𝐿, we can
efficiently transform any instance of 𝐿 into an instance of SAT that has the same “yes/no answer”: either both instances
are in their respective languages, or neither is. More precisely, there is an efficient procedure that maps any instance 𝑥
of 𝐿 to a corresponding Boolean formula 𝜑𝑉,𝑥, such that51

𝑥 ∈ 𝐿 ⇐⇒ 𝜑𝑉,𝑥 ∈ SAT .

By the hypothesis that SAT ∈ P, there is an efficient decider 𝐷SAT for SAT, so from all this we get the following
efficient decider for 𝐿:

function 𝐷𝐿(𝑥)
construct 𝜑𝑉,𝑥 as described below
return 𝐷SAT(𝜑𝑉,𝑥)

Since 𝜑𝑉,𝑥 can be constructed in time polynomial in the size of 𝑥, and 𝐷SAT runs in time polynomial in the size of
𝜑𝑉,𝑥, by composition, 𝐷𝐿 as a whole runs in time polynomial in the size of 𝑥. And the fact that 𝐷𝐿 is correct (i.e., it
decides 𝐿) follows directly from the correctness of 𝐷SAT and the above-stated relationship between 𝑥 and 𝜑𝑉,𝑥.

This completes the high-level description of the proof strategy. In the following section we show how to efficiently
construct 𝜑𝑉,𝑥 from 𝑥, so that they satisfy the above-stated relationship.

50 The Cook-Levin Theorem is named after its discoverers, Stephen Cook and Leonid Levin, who found it in the early 1970s. Interestingly, they
discovered this theorem independently of each other, with Cook working in the USA (and later Canada), and Levin working in Russia. Due to the
“Cold War” of the time, the two countries’ research communities did not have much interaction.

51 In fact, the above equivalence follows from a stronger property: by the careful design of 𝜑𝑉,𝑥, there is a two-way correspondence between the
valid certificate(s) 𝑐 for 𝑥 (if any), and the satisfying assignment(s) for 𝜑𝑉,𝑥 (if any). That is, any certificate 𝑐 that makes 𝑉 (𝑥, 𝑐) accept directly
yields a corresponding satisfying assignment for 𝜑𝑉,𝑥, and any satisfying assignment for 𝜑𝑉,𝑥 yields a corresponding certificate 𝑐 that makes
𝑉 (𝑥, 𝑐) accept.

151

CHAPTER

SIXTEEN

PROOF OF THE COOK-LEVIN THEOREM

16.1 Configurations and Tableaus

In order to describe the construction of 𝜑𝑉,𝑥, we fist need to recall the notion of a configuration of a Turing machine and
its representation as a sequence, which we previously discussed in Wang Tiling (page 113). A configuration encodes a
“snapshot” of a Turing machine’s execution: the contents of the machine’s tape, the active state 𝑞 ∈ 𝑄, and the position
of the tape head. We represent these as an infinite sequence over the alphabet Γ∪𝑄 (the union of the finite tape alphabet
and the TM’s finite set of states), which is simply:

• the contents of the tape, in order from the leftmost cell,

• with the active state 𝑞 ∈ 𝑄 inserted directly to the left of the symbol corresponding to the cell on which the head
is positioned.

For example, if the input is 𝑥1𝑥2 · · ·𝑥𝑛 and the initial state is 𝑞0, then the following sequence represents the machine’s
starting configuration:

𝑞0𝑥1𝑥2 · · ·𝑥𝑛⊥⊥ . . .

Since the head is at the leftmost cell and the state is 𝑞0, the string has 𝑞0 inserted to the left of the leftmost tape symbol.
If the transition function gives 𝛿(𝑞0, 𝑥1) = (𝑞′, 𝑥′, 𝑅), then the next configuration is represented by

𝑥′𝑞′𝑥2 · · ·𝑥𝑛⊥⊥ . . .

The first cell’s symbol has been changed to 𝑥′, the machine is in state 𝑞′, and the head is at the second cell, represented
here by writing 𝑞′ to the left of that cell’s symbol.

As stated above in the proof overview, for any language 𝐿 ∈ NP there exists an efficient verifier 𝑉 that takes as input
an instance 𝑥, a certificate 𝑐 whose size is some polynomial in |𝑥|, and which runs in time polynomial in the input size,
and hence in |𝑥| as well. So altogether, there is some constant 𝑘 such that 𝑉 (𝑥, 𝑐) runs for at most |𝑥|𝑘 steps before
halting, for any 𝑥, 𝑐.52 Since the head starts at the leftmost cell and can move only one position in each step, this implies
that 𝑉 (𝑥, 𝑐) can read or write only the first |𝑥|𝑘 cells of the tape. Thus, instead of using an infinite sequence, we can
represent any configuration during the execution of 𝑉 (𝑥, 𝑐) using just a finite string of length about |𝑥|𝑘, ignoring the
rest since it cannot affect the execution.

For an instance 𝑥 of size 𝑛 = |𝑥|, we can represent the sequence of all the configurations of the machine, over its (at
most) 𝑛𝑘 computational steps, as an 𝑛𝑘-by-𝑛𝑘 tableau, with one configuration per row; for convenience later on, we
also place a special # symbol at the start and end of each row.53 So, each cell of the tableau contains a symbol from

52 To be completely accurate, this holds for all sufficiently large |𝑥| (and all 𝑐). There are only finitely many 𝑥 that are not “sufficiently large,” so
the yes/no answer of whether 𝑥 ∈ 𝐿 for each of these 𝑥 can be “hard-coded” into the decider for 𝐿. Hence we restrict our attention to deciding 𝐿
for all sufficiently large 𝑥.

53 To be completely accurate, we need 𝑛𝑘 + 1 rows and 𝑛𝑘 + 3 columns to represent the tableau: 𝑡 computational steps require 𝑡+ 1 rows, and
we need 𝑛𝑘 columns for the tape cells, plus one for the active state and two for the # symbols. These constant terms are not important to the proof,
so for notational simplicity we ignore them. In addition, if the machine halts in fewer than 𝑛𝑘 steps, we “pad” the tableau to have exactly 𝑛𝑘 + 1
rows by appending copies of the final row (corresponding to the halting configuration).

152

Foundations of Computer Science, Release 0.5

the set 𝑆 = Γ ∪𝑄 ∪ {#}, where Γ is the finite tape alphabet of 𝑉 ; 𝑄 is the finite set of states in 𝑉 ; and # /∈ Γ ∪𝑄 is
a special extra symbol.

𝑞!" 𝑤# 𝑤$ ⋯ 𝑤% ⊥ ⋯ ⊥
#
#

#

𝑛!

𝑛!

Initial configuration

After 1 step

𝑉 halts after at most 𝑛! steps

Observe that, since 𝑉 is deterministic, the contents of the first row of the tableau completely determine the contents of
all the rows, via the “code” of 𝑉 . Moreover, adjacent rows represent a single computational step of the machine, and
hence are identical to each other, except in the vicinity of the symbols representing the active states before and after the
transition. Finally, 𝑉 (𝑥, 𝑐) accepts if and only if the accept-state symbol 𝑞acc ∈ 𝑄 appears somewhere in its tableau.
These are important feature of tableaus that are exploited in the construction of the formula 𝜑𝑉,𝑥, which we describe
next.

16.2 Constructing the Formula

With the notion of a computational tableau in hand, we now describe the structure of the formula 𝜑𝑉,𝑥 that is constructed
from the instance 𝑥 (also using the fixed code of 𝑉).

• The variables of the formula represent the contents of all the cells in a potential tableau for 𝑉 . That is, assigning
Boolean values to all the variables fully specifies the contents of a claimed tableau, including the value of a
certificate 𝑐 in the first row.

Conceptually, we can think of an assignment to the variables, and the potential tableau that they represent, as a
claimed execution transcript for 𝑉 .

• The formula 𝜑𝑉,𝑥 is carefully designed to evaluate whether the claimed tableau (as specified by the variables’
values) meets two conditions:

1. it is the actual execution tableau of 𝑉 (𝑥, 𝑐), for the specific given instance 𝑥, and whatever certificate 𝑐
appears in the first row, and

2. it is an accepting tableau, i.e., 𝑉 (𝑥, 𝑐) accepts.

Conceptually, we can think of 𝜑𝑉,𝑥 as checking whether the claimed execution transcript for 𝑉 is genuine, and
results in 𝑉 accepting the specific instance 𝑥.

In summary, the formula 𝜑𝑉,𝑥 evaluates to true if and only if its variables are set so that they specify the full and

16.2. Constructing the Formula 153

Foundations of Computer Science, Release 0.5

accepting execution tableau of 𝑉 (𝑥, 𝑐), for the certificate 𝑐 specified by the variables. Therefore, as needed,

𝜑𝑉,𝑥 ∈ SAT ⇐⇒ 𝜑𝑉,𝑥 is satisfiable
⇐⇒ there exists 𝑐 s.t. 𝑉 (𝑥, 𝑐) accepts
⇐⇒ 𝑥 ∈ 𝐿 ,

where the last equivalence holds by Definition 139.

We now give the details. The variables of the formula are as follows:

For each cell position 𝑖, 𝑗 of the tableau, and each symbol 𝑠 ∈ 𝑆, there is a Boolean variable 𝑡𝑖,𝑗,𝑠.

So, there are |𝑆| · 𝑛2𝑘 = 𝑂(𝑛2𝑘) variables in total, which is polynomial in 𝑛 = |𝑥| because |𝑆| and 2𝑘 are constants.
(Recall that 𝑆 is a fixed finite alphabet that does not vary with 𝑛.)

Assigning Boolean values to these variables specifies the contents of a claimed tableau, as follows:

Assigning 𝑡𝑖,𝑗,𝑠 = true specifies that cell 𝑖, 𝑗 of the claimed tableau has symbol 𝑠 in it.

Observe that the variables can be assigned arbitrary Boolean values, so for the same cell location 𝑖, 𝑗, we could po-
tentially assign 𝑡𝑖,𝑗,𝑠 = true for multiple different values of 𝑠, or none at all. This would make the contents of cell 𝑖, 𝑗
undefined. The formula 𝜑𝑉,𝑥 is designed to “check” for this and evaluate to false in such a case, and also to check for
all the other needed properties on the claimed tableau, as we now describe.

The formula 𝜑𝑉,𝑥 is defined as the conjunction (AND) of four subformulas:

𝜑𝑉,𝑥 = 𝜑cell ∧ 𝜑accept ∧ 𝜑start,𝑥 ∧ 𝜑move,𝑉 .

Each subformula “checks” (or “enforces”) a certain condition on the variables and the claimed tableau they specify,
evaluating to true if the condition holds, and false if it does not. The subformulas check the following conditions:

• 𝜑cell checks that each cell of the claimed tableau is well defined, i.e., it contains exactly one symbol;

• 𝜑accept checks that the claimed tableau is an accepting tableau, i.e., that 𝑞acc appears somewhere in it;

• 𝜑start,𝑥 checks that the first row of the claimed tableau is valid, i.e., it represents the initial configuration of the
verifier running on the given instance 𝑥 and some certificate 𝑐 (as specified by the variables);

• 𝜑move,𝑉 checks that each non-starting row of the claimed tableau follows from the previous one, according to the
transition function of 𝑉 .

Observe that, as needed above, all these conditions hold if and only if the claimed tableau is indeed the actual accepting
execution tableau of 𝑉 (𝑥, 𝑐), for the certificate 𝑐 that appears in the first row. So, it just remains to show how to design
the subformulas to correctly check their respective conditions, which we do next.

16.2.1 Cell Consistency

To check that a given cell 𝑖, 𝑗 has a well-defined symbol, we need exactly one of the variables 𝑡𝑖,𝑗,𝑠 to be true, over all
𝑠 ∈ 𝑆. The formula ⋁︁

𝑠∈𝑆

𝑡𝑖,𝑗,𝑠

checks that at least one of the variables is true, and the formula

¬
⋁︁

distinct 𝑠,𝑠′∈𝑆

(𝑡𝑖,𝑗,𝑠 ∧ 𝑡𝑖,𝑗,𝑠′) =
⋀︁

distinct 𝑠,𝑠′∈𝑆

(¬𝑡𝑖,𝑗,𝑠 ∨ ¬𝑡𝑖,𝑗,𝑠′)

checks that no more than one of the variables is true (where the equality holds by De Morgan’s laws54).
54 https://en.wikipedia.org/wiki/De_Morgan%27s_laws

16.2. Constructing the Formula 154

https://en.wikipedia.org/wiki/De_Morgan%27s_laws

Foundations of Computer Science, Release 0.5

Putting these together over all cells 𝑖, 𝑗, the subformula

𝜑cell =
⋀︁

1≤𝑖,𝑗≤𝑛𝑘

⎡⎣⋁︁
𝑠∈𝑆

𝑡𝑖,𝑗,𝑠 ∧
⋀︁

distinct 𝑠,𝑠′∈𝑆

(¬𝑡𝑖,𝑗,𝑠 ∨ ¬𝑡𝑖,𝑗,𝑠′)

⎤⎦ .

checks that for all 𝑖, 𝑗, exactly one of 𝑡𝑖,𝑗,𝑠 is true, as needed.

The formula has 𝑂(|𝑆|2) = 𝑂(1) literals for each cell (because 𝑆 is a fixed alphabet that does not vary with 𝑛 = |𝑥|),
so 𝜑cell has size 𝑂(𝑛2𝑘), which is polynomial in 𝑛 = |𝑥| because 2𝑘 is a constant.

16.2.2 Accepting Tableau

To check that the claimed tableau is an accepting one, we just need to check that at least one cell has 𝑞acc as its symbol,
which is done by the following subformula:

𝜑accept =
⋁︁

1≤𝑖,𝑗≤𝑛𝑘

𝑡𝑖,𝑗,𝑞acc .

This has one literal per cell, for a total size of 𝑂(𝑛2𝑘), which again is polynomial in 𝑛 = |𝑥|.

16.2.3 Starting Configuration

For the top row of the tableau, which represents the starting configuration, we suppose that the encoding of an input
pair (𝑥, 𝑐) separates 𝑥 from 𝑐 on the tape using a special symbol $ ∈ Γ ∖ Σ that is in the tape alphabet Γ but not in the
input alphabet Σ. (Recall that 𝑥 and 𝑐 are strings over Σ, so $ unambiguously separates them.) Letting 𝑚 = |𝑐|, the
top row of the tableau is therefore as follows:

𝑞!" 𝑥# ⋯ 𝑥$ $ 𝑐# ⋯ 𝑐% ⊥ ⋯
The row starts with the # symbol. Since the machine is in active state 𝑞start, and the head is at the leftmost cell of
the tape, 𝑞start is the second symbol. The contents of the tape follow, which are the symbols of the input 𝑥, then the $
separator, then the symbols of the certificate 𝑐, then blanks until we have 𝑛𝑘 symbols, except for the last symbol, which
is #.

We now describe the subformula 𝜑start,𝑥 that checks that the first row of the claimed tableau has the above form. We
require the row to have the specific, given instance 𝑥 in its proper position of the starting configuration. This is checked
by the formula

𝜑input = 𝑡1,3,𝑥1 ∧ 𝑡1,4,𝑥2 ∧ · · · ∧ 𝑡1,𝑛+2,𝑥𝑛 .

For the tableau cells corresponding to the certificate, our construction does not know what certificate(s) 𝑐, if any,
would cause 𝑉 (𝑥, 𝑐) to accept, or even what their sizes are (other than that they are less than 𝑛𝑘). Indeed, a main idea
of this construction is that any satisfying assignment for 𝜑𝑉,𝑥, if one exists, specifies a valid certificate 𝑐 for 𝑥 (and
vice versa).

So, our formula allows any symbol 𝑠 ∈ Σ ∪ {⊥} from the input alphabet, as well as blank, to appear in the positions
after the separator $. We just need to ensure that any blanks appear only after the certificate string, i.e., not before
any symbol from Σ. Overall, the formula that checks that the portion of the first row dedicated to the certificate is
well-formed is

𝜑cert =

𝑛𝑘−1⋀︁
𝑗=𝑛+4

(︃
𝑡1,𝑗,⊥ ∨

(︃⋁︁
𝑠∈Σ

𝑡1,𝑗,𝑠 ∧ ¬𝑡1,𝑗−1,⊥

)︃)︃
.

16.2. Constructing the Formula 155

Foundations of Computer Science, Release 0.5

In words, this says that each cell in the zone dedicated to the certificate either has a blank, or has an input-alphabet
symbol and the preceding symbol is not blank.

Putting these pieces together with the few other fixed cell values, the subformula that checks the first row of the claimed
tableau is:

𝜑start,𝑥 = 𝑡1,1,# ∧ 𝑡1,2,𝑞start ∧ 𝜑input ∧ 𝑡1,𝑛+3,$ ∧ 𝜑cert ∧ 𝑡1,𝑛𝑘,# .

This subformula has one literal for each symbol in the instance 𝑥, the start state, and the special # and $ symbols. It
has 𝑂(|Σ|) = 𝑂(1) literals for each cell in the zone dedicated to the certificate (recall that the tape alphabet Γ is fixed
and does not vary with 𝑛 = |𝑥|). Thus, this subformula has size 𝑂(𝑛𝑘), which again is polynomial in 𝑛 = |𝑥|.

16.2.4 Transitions

Finally, we describe the subformula that checks whether every non-starting row in the claimed tableau follows from
the previous one. This is the most intricate part of the proof, and the only one that relies on the transition function, or
“code”, of 𝑉 .

As a warmup first attempt, recall that any syntactically legal configuration string 𝑟 (regardless of whether 𝑉 can actually
reach that configuration) determines the next configuration string 𝑟′, according to the code of 𝑉 . So, letting 𝑖, 𝑖 + 1
denote a pair of adjacent row indices, and 𝑟 denote a legal configuration string, we could write:

1. the formula that checks whether row 𝑖 equals 𝑟 and row 𝑖+ 1 equals the corresponding 𝑟′, namely,

𝜑𝑖,𝑟 =

𝑛𝑘⋀︁
𝑗=1

(𝑡𝑖,𝑗,𝑟𝑗 ∧ 𝑡𝑖+1,𝑗,𝑟′𝑗
) ;

2. the formula that checks whether row 𝑖+ 1 follows from row 𝑖, namely,

𝜑𝑖 =
⋁︁

legal 𝑟

𝜑𝑖,𝑟 ;

3. the formula that checks whether every non-starting row follows from the previous one, namely,

𝜑move,𝑉 =

𝑛𝑘−1⋀︁
𝑖=1

𝜑𝑖 .

Because 𝜑start,𝑥 checks that the first row of the claimed tableau is a valid starting configuration, 𝜑start,𝑥 ∧ 𝜑move,𝑉 does
indeed check that the entire claimed tableau is valid.

This approach gives a correct formula, but unfortunately, it is not efficient—the formula does not have size polynomial
in 𝑛 = |𝑥|. The only problem is in the second step: because there are multiple valid choices for each symbol of a legal
𝑟, and 𝑟 has length 𝑛𝑘, there are exponentially many such 𝑟. So, taking the OR over all of them results in a formula of
exponential size.

To overcome this efficiency problem, we proceed similarly as above, but using a finer-grained breakdown of adjacent
rows than in 𝜑𝑖,𝑟 above. The main idea is to consider the 2-by-3 “windows” (subrectangles) of adjacent rows, and check
that every window is “valid” according to the code of 𝑉 . It can be proved that if all the overlapping 2-by-3 windows of
a claimed pair of rows are valid, then the pair as a whole is valid. This is essentially because valid adjacent rows are
almost identical (except around the cells with the active states), and the windows overlap sufficiently to guarantee that
any invalidity in the claimed rows will be exposed in some 2-by-3 window.55

55 Interestingly, the same does not hold for 2-by-2 windows: it is possible to construct a pair of rows in which every 2-by-2 window is valid, but
the pair of rows as a whole does not represent a correct transition according to the code of 𝑉 . So, we must use windows of width at least 3, and 3
suffices.

16.2. Constructing the Formula 156

Foundations of Computer Science, Release 0.5

𝑞!" 𝑤# 𝑤$ ⋯ 𝑤% ⊥ ⋯ ⊥
#
#

? ? ?
? ? ?

#

𝑛!

𝑛!

There are |𝑆|6 = 𝑂(1) distinct possibilities for a 2-by-3 window, but not all of them are valid. Below we describe all
the valid windows, and based on this we construct the subformula 𝜑move,𝑉 as follows.

For any particular valid window 𝑤, let 𝑠1, . . . , 𝑠6 be its six symbols, going left-to-right across its first then second row.
Similarly to 𝜑𝑖,𝑟 above, the following simple formula checks whether the window of the claimed tableau with top-left
corner at 𝑖, 𝑗 matches 𝑤:

𝜑𝑖,𝑗,𝑤 = (𝑡𝑖,𝑗,𝑠1 ∧ 𝑡𝑖,𝑗+1,𝑠2 ∧ 𝑡𝑖,𝑗+2,𝑠3 ∧ 𝑡𝑖+1,𝑗,𝑠4 ∧ 𝑡𝑖+1,𝑗+1,𝑠5 ∧ 𝑡𝑖+1,𝑗+2,𝑠6) .

Now, letting 𝑊 be the set of all valid windows, similarly to 𝜑𝑖 above, the following formula checks whether the window
at 𝑖, 𝑗 of the claimed tableau is valid:

𝜑𝑖,𝑗 =
⋁︁

𝑤∈𝑊

𝜑𝑖,𝑗,𝑤 .

Finally, we get the subformula that checks whether every window in the tableau is valid:

𝜑move,𝑉 =
⋀︁

1≤𝑖≤𝑛𝑘−1
1≤𝑗≤𝑛𝑘−2

𝜑𝑖,𝑗 .

The set 𝑊 of valid windows has size |𝑊 | ≤ |𝑆|6 = 𝑂(1), so each 𝜑𝑖,𝑗 has 𝑂(1) literals. Because there are 𝑂(𝑛2𝑘)
windows to check, the subformula 𝜑move,𝑉 has size 𝑂(𝑛2𝑘), which again is polynomial in 𝑛 = |𝑥|.
We now describe all the valid windows. The precise details of this are not so essential, because all we used above were
the facts that the valid windows are well defined, and that there are 𝑂(1) of them. We use the following notation in the
descriptions and diagrams:

• 𝛾 for an arbitrary element of Γ,

• 𝑞 for an arbitrary element of 𝑄,

16.2. Constructing the Formula 157

Foundations of Computer Science, Release 0.5

• 𝜌 for an arbitrary element of Γ ∪𝑄,

• 𝜎 for an arbitrary element of Γ ∪ {#}.

First, a window having the # symbol somewhere in it is valid only if # is in the first position of both rows, or is in
the third position of both rows. So, every valid window has one of the following forms, where the symbols 𝜌1, . . . , 𝜌6
must additionally be valid according to the rules below.

𝜌! 𝜌"
𝜌# 𝜌$

𝜌! 𝜌" 𝜌#
𝜌$ 𝜌% 𝜌&

𝜌! 𝜌" #
𝜌# 𝜌$ #

If a window is not in the vicinity of a state symbol 𝑞 ∈ 𝑄, then the machine’s transition does not affect the portion of
the configuration corresponding to the window, so the top and bottom rows match:

𝜎! 𝛾 𝜎"
𝜎! 𝛾 𝜎"

To reason about what happens in a window that is in the vicinity of a state symbol, we consider how the configuration
changes as a result of a right-moving transition 𝛿(𝑞, 𝛾) = (𝑞′, 𝛾′, 𝑅):

𝛾! 𝛾" 𝛾# 𝛾$ 𝑞 𝛾 𝛾% 𝛾& 𝛾'
𝛾! 𝛾" 𝛾# 𝛾$ 𝛾(𝑞(𝛾% 𝛾& 𝛾'

1 2 3 4

The head moves to the right, so 𝑞′ appears in the bottom row at the column to the right of where 𝑞 appears in the top
row. The symbol 𝛾 is replaced by 𝛾′, though its position moves to the left to compensate for the rightward movement
of the state symbol. There are four windows affected by the transition, labeled above by their leftmost columns. We
thus have the following four kinds of valid windows corresponding to a rightward transition 𝛿(𝑞, 𝛾) = (𝑞′, 𝛾′, 𝑅):

𝜎 𝛾! 𝑞
𝜎 𝛾! 𝛾"

𝜎 𝑞 𝛾
𝜎 𝛾" 𝑞"

𝑞 𝛾 𝜎
𝛾" 𝑞" 𝜎

𝛾 𝛾! 𝜎
𝑞" 𝛾! 𝜎

Note that we have used 𝜎 for the edges of some windows, as there can be either a tape symbol or the tableau-edge
marker # in these positions.

We now consider how the configuration changes as a result of a left-moving transition 𝛿(𝑞, 𝛾) = (𝑞′, 𝛾′, 𝐿):

16.2. Constructing the Formula 158

Foundations of Computer Science, Release 0.5

𝛾! 𝛾" 𝛾# 𝛾$ 𝑞 𝛾 𝛾% 𝛾& 𝛾'
𝛾! 𝛾" 𝛾# 𝑞(𝛾$ 𝛾(𝛾% 𝛾& 𝛾'

1 2 3 4 5

The head moves to the left, so 𝑞′ appears in the bottom row at the column to the left of where 𝑞 appears in the top row.
As with a rightward transition, we replace the old symbol 𝛾 with the new symbol 𝛾′. This time, however, the symbol
to the left of the original position of the head moves right to compensate for the leftward movement of the head. So
here we have the following five kinds of valid windows corresponding to the leftward transition 𝛿(𝑞, 𝛾) = (𝑞′, 𝛾′, 𝑅):

𝜎 𝛾! 𝛾"
𝜎 𝛾! 𝑞#

𝜎 𝛾" 𝑞
𝜎 𝑞# 𝛾"

𝑞 𝛾 𝜎
𝛾" 𝛾# 𝜎

𝛾 𝛾" 𝜎
𝛾# 𝛾" 𝜎

𝛾" 𝑞 𝛾
𝑞# 𝛾" 𝛾#

We also need to account for the case where the head is at the leftmost cell on the tape, in which case the head does not
move:

𝑞 𝛾 𝛾! 𝛾" 𝛾#
𝑞$ 𝛾$ 𝛾! 𝛾" 𝛾#
1 2 3

Here we have three kinds of valid windows, but the last one actually has the same structure as the last window in the
normal case for a leftward transition. Thus, we have only two more kinds of valid windows:

𝑞 𝛾
𝑞! 𝛾!

𝑞 𝛾 𝛾"
𝑞! 𝛾! 𝛾"

Finally, we need one last set of valid windows to account for the machine reaching the accept state before the last row of
the tableau. As stated above, the valid tableau is “padded” with copies of the final configuration, so the valid windows
for this case look like:

𝑞!"" 𝛾 𝜎
𝑞!"" 𝛾 𝜎

𝜎# 𝑞!"" 𝜎$
𝜎# 𝑞!"" 𝜎$

𝜎 𝛾 𝑞!""
𝜎 𝛾 𝑞!""

16.2. Constructing the Formula 159

Foundations of Computer Science, Release 0.5

16.3 Conclusion

We summarize the main claims about what we have just done.

Using an efficient verifier 𝑉 for an arbitrary language 𝐿 ∈ NP, we have demonstrated how to efficiently construct a
corresponding formula 𝜑𝑉,𝑥 from a given instance 𝑥 of 𝐿. The formula can be constructed in time polynomial in |𝑥|,
and in particular the total size of the formula is 𝑂(|𝑥|2𝑘) literals.

Then, we (almost entirely) proved that 𝑥 ∈ 𝐿 ⇐⇒ 𝜑𝑉,𝑥 ∈ SAT. In the =⇒ direction: by correctness of 𝑉 , any
𝑥 ∈ 𝐿 has at least one certificate 𝑐 that makes 𝑉 (𝑥, 𝑐) accept, so the computation tableau for 𝑉 (𝑥, 𝑐) is accepting. In
turn, by design of the formula 𝜑𝑉,𝑥, this tableau defines a satisfying assignment for the formula (i.e., an assignment to
its variables that makes 𝜑𝑉,𝑥 evaluate to true). So, 𝑥 ∈ 𝐿 implies that 𝜑𝑉,𝑥 ∈ SAT.

In the ⇐= direction: if the constructed formula 𝜑𝑉,𝑥 ∈ SAT, then by definition it has a satisfying assignment. Again
by the special design of the formula, any satisfying assignment defines the contents of an actual accepting computation
tableau for 𝑉 (𝑥, 𝑐), for the 𝑐 appearing in the top row of the tableau. Since 𝑉 (𝑥, 𝑐) accepts for this 𝑐, we conclude that
𝑥 ∈ 𝐿 by the correctness of the verifier. So, 𝜑𝑉,𝑥 ∈ SAT implies that 𝑥 ∈ 𝐿.

Finally, if SAT ∈ P, then an efficient decider 𝐷SAT for SAT exists, and we can use it to decide 𝐿 efficiently: given
an instance 𝑥, simply construct 𝜑𝑉,𝑥 and output 𝐷SAT(𝜑𝑉,𝑥); by the above property, this correctly determines whether
𝑥 ∈ 𝐿. As a result, SAT ∈ P implies that NP ⊆ P and hence P = NP, as claimed.

Circuit Satisfiability

A problem that is equivalent to formula satisfiability is that of circuit satisfiability. Given a circuit 𝐶 composed of
𝑚 logic gates over 𝑛 binary inputs and with a single binary output, is there a set of input values such that the output
is 1? In other words, is there an assignment to the inputs that satisfies the circuit?

Without loss of generality, assume that each logic gate is either a unary NOT gate, a binary AND gate, or a binary
OR gate. (This is a universal gate set, i.e., any Boolean function can be expressed in terms of these gates.) Since
these gates correspond to negation, conjunction, and disjunction, we can mechanically convert a Boolean formula
into an equivalent circuit whose size is linear in the size of the formula. The following is a circuit corresponding to
the formula (𝑦 ∨ (¬𝑥 ∧ 𝑧) ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑧):

OR
AND

OR

NOT

AND

OR
NOT

𝑥

𝑦

𝑧

NOT

What about the other direction, of converting a circuit into a formula? In general, the gates in a circuit may have
multiple fan-out, meaning that the output of a gate may be used as the inputs to multiple other gates. The following
is an example:

16.3. Conclusion 160

Foundations of Computer Science, Release 0.5

𝑥

𝑦

AND

OR

OR

AND

AND

A naïve translation can result in an exponential increase in size: wherever there is multiple fan-out, the subformula
corresponding to the intermediate result would be repeated. For the circuit above, such a translation would be

((𝑥 ∧ 𝑦) ∨ (𝑥 ∨ 𝑦)) ∧ ((𝑥 ∧ 𝑦) ∧ (𝑥 ∨ 𝑦)) .

There are two copies each of the subformulas 𝑥 ∧ 𝑦 and 𝑥 ∨ 𝑦. For larger circuits, a subformula may be repeated
many times.

Rather than naïvely repeating, for the output of each gate we can introduce a new variable. For instance, the following
is an AND gate with existing variables 𝑎 and 𝑏 as inputs, and a new variable 𝑐 as output:

AND
𝑎
𝑏

𝑐

The relationship between the inputs 𝑎 and 𝑏 and the output 𝑐 is 𝑐 = 𝑎∧𝑏. A formula cannot directly express equality,
but observe that variables 𝑥 and 𝑦 are equal exactly when either both of them are true, or both are false. Thus, 𝑥 = 𝑦
is logically equivalent to (𝑥 ∧ 𝑦) ∨ (¬𝑥 ∧ ¬𝑦). For 𝑐 = 𝑎 ∧ 𝑏, this idea translates to

𝑐 = 𝑎 ∧ 𝑏 ≡ (𝑐 ∧ (𝑎 ∧ 𝑏)) ∨ (¬𝑐 ∧ ¬(𝑎 ∧ 𝑏))

≡ (𝑐 ∧ (𝑎 ∧ 𝑏)) ∨ (¬𝑐 ∧ (¬𝑎 ∨ ¬𝑏)) .

In the second step, we applied De Morgan’s laws56 to move negation inwards, so that only variables (and not subfor-
mulas) are negated.

We can similarly express an OR gate with inputs 𝑎 and 𝑏 and output 𝑐:

𝑐 = 𝑎 ∨ 𝑏 ≡ (𝑐 ∧ (𝑎 ∨ 𝑏)) ∨ (¬𝑐 ∧ ¬(𝑎 ∨ 𝑏))

≡ (𝑐 ∧ (𝑎 ∨ 𝑏)) ∨ (¬𝑐 ∧ (¬𝑎 ∧ ¬𝑏)) .

For a NOT gate with input 𝑎, we can simply express the output as ¬𝑎 without introducing a new variable.

Now that we have subformulas for each gate, the formula for the full circuit is just the conjunction of the subformulas
for each gate. Since each gate introduces at most one variable and a subformula of at most six literals, the size of the
resulting formula is linear in the size of the circuit.

We have demonstrated that the formula-satisfiability problem SAT is equivalent to the circuit-satisfiability problem
CSAT. Since the former is a “hardest” problem in NP, so is the latter. Next, we generalize and formalize the notion
of efficient transformations between problems by introducing the notion of polynomial-time mapping reductions.

56 https://en.wikipedia.org/wiki/De_Morgan%27s_laws

16.3. Conclusion 161

https://en.wikipedia.org/wiki/De_Morgan%27s_laws

CHAPTER

SEVENTEEN

NP-COMPLETENESS

With the example of SAT and the Cook-Levin theorem in hand, we now formally define what it means to be a “hardest”
problem in NP, and demonstrate several examples of such problems.

17.1 Polynomial-Time Mapping Reductions

The heart of the Cook-Levin theorem is an efficient algorithm for converting an instance of an (arbitrary) language
𝐿 ∈ NP to an instance 𝜑𝑉,𝑥 of SAT, such that

𝑥 ∈ 𝐿 ⇐⇒ 𝜑𝑉,𝑥 ∈ SAT .

Thus, any (hypothetical) efficient decider for SAT yields an efficient decider for 𝐿, which simply converts its input 𝑥
to 𝜑𝑉,𝑥 and invokes the decider for SAT on it.

This kind of efficient transformation, from an arbitrary instance of one problem to a corresponding instance of another
problem having the same “yes/no answer”, is known as a polynomial-time mapping reduction, which we now formally
define.

Definition 152 (Polynomial-Time Mapping Reduction) A polynomial-time mapping reduction—also known
as a Karp reduction for short—from a language 𝐴 to a language 𝐵 is a function 𝑓 : Σ* → Σ* having the fol-
lowing properties:57

1. Efficiency: 𝑓 is polynomial-time computable: there is an algorithm that, given any input 𝑥 ∈ Σ*, outputs
𝑓(𝑥) in time polynomial in |𝑥|.

2. Correctness: for all 𝑥 ∈ Σ*,

𝑥 ∈ 𝐴 ⇐⇒ 𝑓(𝑥) ∈ 𝐵 .

Equivalently, if 𝑥 ∈ 𝐴 then 𝑓(𝑥) ∈ 𝐵, and if 𝑥 /∈ 𝐴 then 𝑓(𝑥) /∈ 𝐵.58

If such a reduction exists, we say that 𝐴 polynomial-time mapping-reduces (or Karp-reduces) to 𝐵, and write
𝐴 ≤𝑝 𝐵.

57 It is meaningful to drop the efficiency property and consider just (correct) mapping reductions, but these are not useful in the context of
P and NP, so in this text we always require mapping reductions to be efficient.

58 The claimed equivalence follows just by taking the contrapositive of the direction 𝑥 ∈ 𝐴 ⇐= 𝑓(𝑥) ∈ 𝐵.

162

Foundations of Computer Science, Release 0.5

𝐴 𝐵

Σ∗ Σ∗

𝑥 𝑓(𝑥)

𝑦 𝑓(𝑦)

YES YES

NO NO

We first observe that a polynomial-time mapping reduction is essentially a special case of (or more precisely, implies
the existence of) a Turing reduction (page 106): we can decide 𝐴 by converting the input instance of 𝐴 to an instance
of 𝐵 using the efficient transformation function, then querying an oracle that decides 𝐵. The following makes this
precise.

Lemma 153 If 𝐴 ≤𝑝 𝐵, then 𝐴 ≤𝑇 𝐵.

Proof 154 Because 𝐴 ≤𝑝 𝐵, there is an efficiently computable function 𝑓 such that 𝑥 ∈ 𝐴 ⇐⇒ 𝑓(𝑥) ∈ 𝐵. To
show that 𝐴 ≤𝑇 𝐵, we give a Turing machine 𝑀𝐴 that decides 𝐴 using an oracle 𝑀𝐵 that decides 𝐵:

function 𝑀𝐴(𝑥)
compute 𝑦 = 𝑓(𝑥)
return 𝑀𝐵(𝑦)

Clearly, 𝑀𝐴 halts on any input, because 𝑓 is polynomial-time computable and 𝑀𝐵 halts on any input. And by
the correctness of 𝑀𝐵 and the code of 𝑀𝐴,

𝑥 ∈ 𝐴 ⇐⇒ 𝑦 = 𝑓(𝑥) ∈ 𝐵

⇐⇒ 𝑀𝐵(𝑦) accepts
⇐⇒ 𝑀𝐴(𝑥) accepts .

Therefore, 𝑀𝐴 decides 𝐴, by Definition 61. □

Observe that the Turing reduction given in Proof 154 simply:

1. applies an efficient transformation to its input,

2. invokes its oracle once, on the resulting value, and

3. immediately outputs the oracle’s answer.

In fact, several (but not all!) of the Turing reductions we have seen for proving undecidability (e.g., for the halts-on-
empty language (page 108) and other undecidable languages (page 110)) are essentially polynomial-time mapping
reductions, because they have this exact form. (To be precise, the efficient transformation in such a Turing reduction is
the mapping reduction, and its use of its oracle is just fixed “boilerplate”.)

Although a polynomial-time mapping reduction is essentially a Turing reduction, the reverse does not hold in general,
due to some important differences:

• A Turing reduction has no efficiency constraints, apart from the requirement that it halts: the reduction may run

17.1. Polynomial-Time Mapping Reductions 163

Foundations of Computer Science, Release 0.5

for arbitrary finite time, both before and after its oracle call(s).

By contrast, in a polynomial-time mapping reduction, the output of the conversion function must be computable
in time polynomial in the input size.

• A Turing reduction is a Turing machine that decides one language given an oracle (“black box”) that decides
another language, which it may use arbitrarily. In particular, it may invoke the oracle multiple times (or not at
all), and perform arbitrary “post-processing” on the results, e.g., negate the oracle’s answer.

By contrast, a polynomial-time mapping reduction does not involve any explicit oracle; it is merely a conversion
function that must “preserve the yes/no answer”. Therefore, there is no way for it to “make multiple oracle calls,”
nor for it to “post-process” (e.g., negate) the yes/no answer for its constructed instance. Implicitly, a polynomial-
time mapping reduction corresponds to making just one oracle call and then immediately outputting the oracle’s
answer.59

In Lemma 98 we saw that if 𝐴 ≤𝑇 𝐵 and 𝐵 decidable, then 𝐴 is also decidable. Denoting the class of decidable
languages by R, this result can be restated as:

If 𝐴 ≤𝑇 𝐵 and 𝐵 ∈ R, then 𝐴 ∈ R.

Polynomial-time mapping reductions give us an analogous result with respect to membership in the class P.

Lemma 155 If 𝐴 ≤𝑝 𝐵 and 𝐵 ∈ P, then 𝐴 ∈ P.

Proof 156 Because𝐵 ∈ P, there is a polynomial-time Turing machine𝑀𝐵 that decides𝐵. And because𝐴 ≤𝑝 𝐵,
the Turing machine 𝑀𝐴 defined in Proof 154, with the machine 𝑀𝐵 as its “oracle”, decides 𝐴.

In addition, 𝑀𝐴(𝑥) runs in time polynomial in its input size |𝑥|, by composition of polynomial-time algorithms.
Specifically, by the hypothesis 𝐴 ≤𝑝 𝐵, computing 𝑓(𝑥) runs in time polynomial in |𝑥|, and as already noted,
𝑀𝐵 runs in time polynomial in its input length, so the composed algorithm 𝑀𝐴 runs in polynomial time.

Since 𝑀𝐴 is a polynomial-time Turing machine that decides 𝐴, we conclude that 𝐴 ∈ P, as claimed. □

Analogously to how Lemma 100 immediately follows from Lemma 98, the following corollary is merely the contra-
positive of Lemma 155.

Lemma 157 If 𝐴 ≤𝑝 𝐵 and 𝐴 /∈ P, then 𝐵 /∈ P.

17.2 NP-Hardness and NP-Completeness

With the notion of a polynomial-time mapping (or Karp) reduction in hand, the heart of the Cook-Levin theorem can
restated as saying that

𝐴 ≤𝑝 SAT for every language 𝐴 ∈ NP.

Combining this with Lemma 155, as an immediate corollary we get the statement of Theorem 151: if SAT ∈ P, then
every NP language is in P, i.e., P = NP.

Informally, the above says that SAT is “at least as hard as” every language in NP (under Karp reductions). This is a
very important property that turns out to be shared by many languages, so we define a special name for it.

Definition 158 (NP-Hard) A language 𝐿 is NP-hard if 𝐴 ≤𝑝 𝐿 for every language 𝐴 ∈ NP.

We define NPH = {𝐿 : 𝐿 is NP-hard} to be the class of all such languages.

59 Alternatively, we could consider a relaxed definition that allows for multiple oracle calls and arbitrary polynomial-time pre- and post-processing.
In other words, this would be a polynomial-time Turing reduction, also known as a Cook reduction. Such reductions are also very useful, but they
do not allow us to make distinctions between complexity classes like NP and coNP, hence the focus on efficient mapping reductions.

17.2. NP-Hardness and NP-Completeness 164

Foundations of Computer Science, Release 0.5

We stress that a language need not be in NP, or even be decidable, to be NP-hard. For example, it can be shown that
the undecidable language 𝐿ACC is NP-hard (see Exercise 167).

With the notion of NP-hardness in hand, the core of the Cook-Levin theorem is as follows.

Theorem 159 (Cook-Levin core) SAT is NP-hard.

Previously, we mentioned the existence of languages that are, informally, the “hardest” ones in NP, and that SAT was
one of them. We now formally define this notion.

Definition 160 (NP-Complete) A language 𝐿 is NP-complete if:

1. 𝐿 ∈ NP, and

2. 𝐿 is NP-hard.

We define NPC = {𝐿 : 𝐿 is NP-complete} to be the class of all such languages.

Since SAT ∈ NP (by Lemma 149) and SAT is NP-hard (by Cook-Levin), SAT is indeed NP-complete.

To show that some language 𝐿 of interest is NP-hard, do we need to repeat and adapt all the work of the Cook-
Levin theorem, with 𝐿 in place of SAT? Thankfully, we do not! Analogously to Lemma 100—which lets us prove
undecidability by giving a Turing reduction from a known-undecidable language—the following lemma shows that we
can establish NP-hardness by giving a Karp reduction from a known-NP-hard language. (We do this below for several
concrete problems of interest, in More NP-complete Problems (page 169).)

Lemma 161 If 𝐴 ≤𝑝 𝐵 and 𝐴 is NP-hard, then 𝐵 is NP-hard.

Proof 162 This follows from the fact that ≤𝑝 is a transitive relation; see Exercise 165 below. By the two hypothe-
ses and Definition 158, 𝐿 ≤𝑝 𝐴 for every 𝐿 ∈ NP, and 𝐴 ≤𝑝 𝐵, so 𝐿 ≤𝑝 𝐵 by transitivity. Since this holds for
every 𝐿 ∈ NP, by definition we have that 𝐵 is NP-hard, as claimed. □

Combining Lemma 155, Lemma 157, and Lemma 161, the fact that 𝐴 ≤𝑝 𝐵 has the following implications in various
scenarios.

Hypothesis Implies
𝐴 ∈ P nothing
𝐴 /∈ P 𝐵 /∈ P
𝐴 is NP-hard 𝐵 is NP-hard
𝐵 ∈ P 𝐴 ∈ P
𝐵 /∈ P nothing
𝐵 is NP-hard nothing

17.3 Resolving P versus NP

The concepts of NP-hardness and NP-completeness are powerful tools for making sense of, and potentially resolving,
the P-versus-NP question. As the following theorem shows, the two possibilities P = NP and P ̸= NP each come with
a variety of equivalent “syntactically weaker” conditions. So, resolving P versus NP comes down to establishing any
one of these conditions—which is still a very challenging task! In addition, the theorem establishes strict relationships
between the various classes of problems we have defined, under each of the two possibilities P = NP and P ̸= NP.

Theorem 163 (P versus NP) The following statements are equivalent, i.e., if any one of them holds, then all of
them hold.

17.3. Resolving P versus NP 165

Foundations of Computer Science, Release 0.5

1. Some NP-hard language is in P.

(In set notation: NPH ∩ P ̸= ∅.)

2. Every NP-complete language is in P.

(In set notation: NPC ⊆ P.)

3. P = NP.

(In words: every language in NP is also in P, and vice-versa.)

4. Every language, except the “trivial” languages Σ* and ∅, is NP-hard.60

(In set notation: 𝒫(Σ*) ∖ {Σ*, ∅} ⊆ NPH.)

It follows that P ̸= NP if and only if no NP-hard language is in P (i.e., NPH∩P = ∅), which holds if and only if
some nontrivial language is not NP-hard.

60 We remark that Statement 4 must exclude the two trivial languages Σ* and ∅, because they are not NP-hard, regardless of whether
P = NP; see Exercise 166.

Before giving the proof of Theorem 163, we discuss its main consequences for attacking the P-versus-NP question.
First, by the equivalence of Statements 1 and 2, all NP-complete problems have the same “status” : either all of
them are efficiently solvable—in which case P = NP, by the equivalence with Statement 3—or none of them is, in
which case P ̸= NP.

So, to prove that P = NP, it would be sufficient (and necessary) to have an efficient algorithm for any single NP-
complete (or even just NP-hard) problem. This is by the equivalence of Statements 1 and 3.

To prove that P ̸= NP, it would trivially suffice to prove that any single problem in NP is not in P. For this we might
as well focus our efforts on showing this for some NP-complete problem, because by the equivalence of Statements 3
and 1, some NP problem lacks an efficient algorithm if and only if every NP-complete problem does.

Alternatively, to prove that P ̸= NP, by the equivalence of Statements 3 and 4 it would suffice to show that some
nontrivial language in NP is not NP-hard. For this we might as well focus our efforts on showing this for some
language in P, because by the equivalence of Statements 4 and 1, if any nontrivial language in NP is not NP-hard, then
every nontrivial language in P is not NP-hard.

Based on Theorem 163, the following Venn diagram shows the necessary and sufficient relationships between the
classes P, NP, NP-hard (NPH), and NP-complete (NPC), for each of the two possibilities P ̸= NP and P = NP.

17.3. Resolving P versus NP 166

Foundations of Computer Science, Release 0.5

NP-Complete =
NP ∩ NP-Hard

NP

P

NP-Hard

P = NP
≈ NP-Complete

P ⊂ NP P = NP

NP-Hard

Proof 164 We refer to Statement 1 as “S1”, and similarly for the others. The following implications hold imme-
diately by the definitions (and set operations):

• S2 =⇒ S1 because an NP-complete, and hence NP-hard, language exists (e.g., SAT).

(In set notation: if NPH∩NP = NPC ⊆ P, then by intersecting with P, we get that NPH∩P = NPC ̸= ∅.)

• S3 =⇒ S2 because by definition, every NP-complete language is in NP.

(In set notation: if P = NP, then NPC ⊆ NP ⊆ P.)

• S4 =⇒ S1 because there is a nontrivial language 𝐿 ∈ P ⊆ NP (e.g., 𝐿 = MAZE), and by S4, 𝐿 is
NP-hard.

(In set notation: ∅ ≠ P ∖ {Σ*, ∅} ⊆ NPH, where the last inclusion is by S4, so by intersecting everything
with P, we get that ∅ ≠ P ∖ {Σ*, ∅} ⊆ NPH ∩ P and hence NPH ∩ P ̸= ∅.)

So, to prove that each statement implies every other one, it suffices to show that S1 =⇒ S3 =⇒ S4.

For S1 =⇒ S3, suppose that some NP-hard language 𝐿 is in 𝑃 . By definition, 𝐴 ≤𝑝 𝐿 for all 𝐴 ∈ NP, so by
Lemma 155, 𝐴 ∈ P. Therefore, NP ⊆ P, and this is an equality because P ⊆ NP, as we have already seen.

For S3 =⇒ S4, suppose that P = NP and let 𝐿 be an arbitrary nontrivial language; we show that 𝐿 is NP-hard.
By nontriviality, there exist some fixed, distinct strings 𝑦 ∈ 𝐿 and 𝑧 /∈ 𝐿. Let 𝐴 ∈ NP = P be arbitrary, so there
is an efficient algorithm 𝑀𝐴 that decides 𝐴. We show that 𝐴 ≤𝑝 𝐿 via the function 𝑓 computed by the following
pseudocode:

function 𝐹 (𝑥)
if 𝑀𝐴(𝑥) accepts then return 𝑦

return 𝑧

It is apparent that 𝐹 is efficient, because 𝑀𝐴 is. And for correctness, by the correctness of 𝑀𝐴, the properties of

17.3. Resolving P versus NP 167

Foundations of Computer Science, Release 0.5

𝑦 ̸= 𝑧, and the code of 𝐹 ,

𝑥 ∈ 𝐴 ⇐⇒ 𝑀𝐴(𝑥) accepts
⇐⇒ 𝑓(𝑥) = 𝑦

⇐⇒ 𝑓(𝑥) ∈ 𝐿 .

Since 𝐴 ≤𝑝 𝐿 for all 𝐴 ∈ NP, we have shown that 𝐿 is NP-hard, as needed. □

Exercise 165 Show that polynomial-time mapping reductions are transitive. That is, if 𝐴 ≤𝑝 𝐵 and 𝐵 ≤𝑝 𝐶,
then 𝐴 ≤𝑝 𝐶.

Exercise 166 Show that no language Karp-reduces to Σ* or to ∅, except for Σ* and ∅ themselves (respectively).
In particular, these languages are not NP-hard, regardless of whether P = NP.

Exercise 167 Show that 𝐿ACC is NP-hard.

17.3. Resolving P versus NP 168

CHAPTER

EIGHTEEN

MORE NP-COMPLETE PROBLEMS

The Cook-Levin Theorem (Theorem 159, showing that SAT is NP-hard), together with the concept of polynomial-time
mapping reductions and Lemma 161, are powerful tools for establishing the NP-hardness of a wide variety of other
natural problems. We do so for several such problems next.

18.1 3SAT

As a second example of an NP-complete problem, we consider satisfiability of Boolean formulas having a special
structure. First, we introduce some more relevant terminology.

• A clause is a disjunction (OR) of literals, like (𝑎 ∨ ¬𝑏 ∨ ¬𝑐 ∨ 𝑑).

• A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction (AND) of clauses. An example of
a CNF formula is

𝜑 = (𝑎 ∨ 𝑏 ∨ ¬𝑐 ∨ 𝑑) ∧ (¬𝑎) ∧ (𝑎 ∨ ¬𝑏) ∧ (𝑐 ∨ 𝑑) .

• A 3CNF formula is a Boolean formula in conjunctive normal form where each clause has exactly three literals,
like the following:

𝜑 = (𝑎 ∨ 𝑏 ∨ ¬𝑐) ∧ (¬𝑎 ∨ ¬𝑎 ∨ 𝑑) ∧ (𝑎 ∨ ¬𝑏 ∨ 𝑑) ∧ (𝑐 ∨ 𝑑 ∨ 𝑑) .

Notice that clauses may have repeated literals, even though this has no effect on the satisfiability of the formula.

Definition 168 (3SAT, 3CNF Satisfiability) The 3CNF-satisfiability language is defined as the set of satisfiable
3CNF formulas:

3SAT = {𝜑 : 𝜑 is a satisfiable 3CNF formula} .

Observe that every satisfiable 3CNF formula is a satisfiable Boolean formula, but not vice versa. Conceivably, the
extra “structure” of 3CNF formulas might make it easier to decide whether they are satisfiable, as compared with
general Boolean formulas. However, it turns out that this is not the case: the problem of deciding 3CNF satisfiability
is NP-complete.61

Theorem 169 3SAT is NP-complete.

First, we must show that 3SAT ∈ NP. An efficient verifier for 3SAT is actually identical to the one for SAT, except
that its input is a 3CNF formula. (As usual, the verifier interprets any input string as being an instance of the relevant
language.)

61 Interestingly, it turns out that 2SAT, the language of satisfiable CNF formulas having two literals per clause, is in P! That is, given a 2CNF
formula we can efficiently decide whether it is satisfiable. This is one of many cases where a slight change in the structure of problem can make an
enormous difference in its complexity.

169

Foundations of Computer Science, Release 0.5

Input: instance: a 3CNF formula; certificate: assignment to its variables
Output: whether the assignment satisfies the formula

function 𝑉 (𝜑, 𝛼)
if 𝜑(𝛼) = 1 then accept
reject

By the same reasoning that applied to the verifier for SAT (see Lemma 149), this is an efficient and correct verifier for
3SAT.

We now show that 3SAT is NP-hard, by proving that SAT ≤𝑝 3SAT. We do so by defining an efficient mapping
reduction 𝑓 that, given an arbitrary Boolean formula 𝜑, outputs a 3CNF formula 𝑓(𝜑) such that 𝜑 ∈ SAT ⇐⇒
𝑓(𝜑) ∈ 3SAT. The reduction 𝑓 and its analysis are as follows.

1. First, convert 𝜑 to a formula 𝜑′ in conjunctive normal form that is satisfiable if and only if 𝜑 is; we say that 𝜑 and
𝜑′ are equisatisfiable. (We stress that the formulas are not necessary equivalent, because they may have different
variables.) We can perform this transformation efficiently, as described in detail below (page 170).

2. Then, convert the CNF formula 𝜑′ to the output 3CNF formula 𝑓(𝜑), as follows.

a) For each clause having more than three literals, split it into a pair of clauses by introducing a new “dummy”
variable. Specifically, convert a clause

(𝑙1 ∨ 𝑙2 ∨ · · · ∨ 𝑙𝑘)

with 𝑘 > 3 literals into the two clauses

(𝑧 ∨ 𝑙1 ∨ 𝑙2) ∧ (¬𝑧 ∨ 𝑙3 ∨ · · · ∨ 𝑙𝑘) ,

where 𝑧 is some new variable that does not appear anywhere else in the formula. Observe that these two
clauses have 3 and 𝑘 − 1 literals, respectively, so the two new clauses both have strictly fewer literals than
the original clause.62 We thus repeat the splitting process until every clause has at most three literals.

We claim that each splitting preserves (un)satisfiability, i.e., the original formula before splitting and new
CNF formula are equisatisfiable (i.e., either both are satisfiable, or neither is). Indeed, more generally, we
claim that the formulas (𝜌 ∨ 𝜌′) and 𝜎 = (𝑧 ∨ 𝜌) ∧ (¬𝑧 ∨ 𝜌′) are equisatisfiable for any formulas 𝜌, 𝜌′ that
do not involve variable 𝑧.

• In one direction, suppose that 𝜎 is satisfiable, i.e., it has a satisfying assignment 𝛼. Then the same
assignment (ignoring the value of 𝑧) satisfies (𝜌 ∨ 𝜌′), because 𝛼 makes exactly one of 𝑧,¬𝑧 false, so
it must make the corresponding one of 𝜌, 𝜌′ true, and therefore satisfies (𝜌 ∨ 𝜌′).

• In the other direction, suppose that (𝜌∨ 𝜌′) is satisfiable, i.e., it has a satisfying assignment 𝛼. Then 𝛼
leaves 𝑧 unassigned (because 𝑧 does not appear in 𝜌 or 𝜌′), and it makes at most one of 𝜌, 𝜌′ false; we
therefore assign 𝑧 to make the corresponding literal 𝑧 or ¬𝑧 true. (If 𝛼 satisfies both 𝜌, 𝜌′, we assign 𝑧
arbitrarily.) This satisfies 𝜎 because it makes both of (𝑧 ∨ 𝜌) and (¬𝑧 ∨ 𝜌′) true.

b) Finally, for each clause that has fewer than three literals, expand it to have three literals simply by repeating
its first literal. For example, the clause (𝑎) becomes (𝑎 ∨ 𝑎 ∨ 𝑎), and (¬𝑏 ∨ 𝑐) becomes (¬𝑏 ∨ ¬𝑏 ∨ 𝑐).
Trivially, this produces an equivalent formula in 3CNF form.

Each transformation on a clause can be done in constant time, and the total number of transformations is linear in
the number of literals in (i.e., size of) 𝜑′. This is because the splitting transformation transforms a clause having
𝑘 > 3 literals into a pair having 3 and 𝑘 − 1 literals. So, the running time of this phase is linear in the size of 𝜑′

(and in particular, the size of 𝑓(𝜑) is linear in the size of 𝜑′).

Because both phases run in polynomial time in the length of their respective inputs, their composition runs in time
polynomial in the length of the input formula 𝜑, as needed. This completes the proof that SAT ≤𝑝 3SAT.

62 Observe that this splitting technique cannot produce smaller clauses having only two literals each, because splitting a clause with three of more
literals yields some new clause having at least three literals. This is why this approach does not yield a polynomial-time mapping reduction from
SAT to 2SAT. Nor should we expect it to: as mentioned above, 2SAT ∈ P, so such a reduction would imply that P = NP!

18.1. 3SAT 170

Foundations of Computer Science, Release 0.5

Efficiently converting a formula to CNF

Here we show how to efficiently convert any formula 𝜑 into another formula 𝜑′ in conjunctive normal form (CNF),
so that the two formulas are equisatisfiable: 𝜑 is satisfiable if and only if 𝜑′ is. Recall that a formula is in CNF if it
is a conjunction (AND) of disjunctions (ORs) of literals.

As a warm-up, observe that we can convert a formula to an equivalent CNF formula, via the distributive rule for OR
over AND. Specifically, we can convert 𝜌∨ (𝜎 ∧ 𝜏) to the equivalent formula (𝜌∨𝜎)∧ (𝜌∨ 𝜏), for any subformulas
𝜌, 𝜎, 𝜏 . By repeatedly applying this rule, we can “push ORs inward” until we get a CNF formula. Unfortunately, this
conversion is not efficient in general: because the distributive rule makes two copies of 𝜌, each application of the
rule can nearly double the size of the formula, so the formula size can blow up exponentially overall. An example
formula for which this happens is (𝑥1 ∧ 𝑦1)∨ · · · ∨ (𝑥𝑘 ∧ 𝑦𝑘), which expands to the AND of 2𝑘 clauses of the form
(𝑣1 ∨ · · · ∨ 𝑣𝑘), where each 𝑣𝑖 is one of 𝑥𝑖 or 𝑦𝑖.

Instead, we seek an efficient transformation algorithm, i.e., one that runs in time polynomial in the size of the input
formula (so in particular, the size of the output formula must also be polynomial). Here we describe an algorithm
known as the Tseitin transformation (sometimes spelled Tseytin), which runs in linear time.

First, recall that by De Morgan’s laws, we assume without loss of generality that any negations in the formula apply
directly to variables, i.e., that we have “pushed negations inward” to the variables themselves. So, any formula is
one of:

• the base case: a literal, like 𝑥 or ¬𝑦;

• the OR of at least two subformulas, like 𝑥 ∨ 𝑦 or (¬𝑥) ∨ 𝑦 ∨ (𝑥 ∧ ¬𝑧);
• the AND of at least two subformulas, like 𝑥 ∧ 𝑦 or (𝑥 ∨ 𝑦) ∧ (𝑦 ∨ 𝑧) ∧ (¬𝑧).

The first idea of the Tseitin transformation is that the new formula 𝜑′ has all the variables of the input formula 𝜑,
plus one new variable for each non-base-case subformula within 𝜑 (including 𝜑 itself, if applicable). Thus, each
subformula in 𝜑, whether base case or not, has an associated literal: each (base-case) literal is associated with itself,
and each (non-base-case) OR/AND subformula is associated with its corresponding new variable.

For example, the following shows a small formula 𝜑 and the new variables 𝑠𝑖 associated with its subformulas:

𝜑 =

𝑠2⏞ ⏟
(¬𝑥 ∧ 𝑦 ∧ ¬𝑦)∨𝑥⏟ ⏞

𝑠1

.

The second idea is that for each non-base-case subformula 𝜌 in 𝜑, the new formula enforces the constraint that 𝜌’s
associated variable must equal 𝜌’s value. This is done via a conjunction of clauses (ANDs of ORs of literals), as
follows:

• For an OR of 𝑘 subformulas, let 𝑠 denote the (new) variable associated with the OR expression, and let
ℓ1, . . . , ℓ𝑘 be the literals associated with the 𝑘 subformulas. Then it can be seen that the conjunction of clauses

(¬𝑠 ∨ ℓ1 ∨ · · · ∨ ℓ𝑘) ∧ (𝑠 ∨ ¬ℓ1) ∧ · · · ∧ (𝑠 ∨ ¬ℓ𝑘) .

is logically equivalent to the constraint 𝑠 = ℓ1 ∨ · · · ∨ ℓ𝑘. That is, an assignment satisfies the conjunction if
and only if the equality holds.

For example, the above example formula 𝜑 is associated with 𝑠1, and is the OR of two subformulas whose
associated literals are 𝑠2, 𝑥 (note that one of the subformulas is a base case, and the other is not). So, we get
the conjunction of clauses

(¬𝑠1 ∨ 𝑠2 ∨ 𝑥) ∧ (𝑠1 ∨ ¬𝑠2) ∧ (𝑠1 ∨ ¬𝑥) .

18.1. 3SAT 171

Foundations of Computer Science, Release 0.5

• For an AND of 𝑘 subformulas, let 𝑠 denote the (new) variable associated with the AND expression, and let
ℓ1, . . . , ℓ𝑘 be the literals associated with the 𝑘 subformulas. Then it can be seen that the conjunction of clauses

(𝑠 ∨ ¬ℓ1 ∨ · · · ¬ℓ𝑘) ∧ (¬𝑠 ∨ ℓ1) ∧ · · · ∧ (¬𝑠 ∨ ℓ𝑘)

is logically equivalent to the constraint 𝑠 = ℓ1 ∧ · · · ∧ ℓ𝑘.

For example, the above example has the subformula (¬𝑥 ∧ 𝑦 ∧ ¬𝑦), which is associated with 𝑠2, and is the
AND of three base-case subformulas whose associated literals are ¬𝑥, 𝑦,¬𝑦. So, we get the conjunction of
clauses

(𝑠2 ∨ 𝑥 ∨ ¬𝑦 ∨ 𝑦) ∧ (¬𝑠2 ∨ ¬𝑥) ∧ (¬𝑠2 ∨ 𝑦) ∧ (¬𝑠2 ∨ ¬𝑦) .

Finally, the output formula 𝜑′ is the AND of all the clauses obtained from all the non-base-case subformulas of 𝜑
(including 𝜑 itself, if applicable), and the literal associated with 𝜑 itself. By construction, 𝜑′ is a CNF formula.

For the above example formula 𝜑, the output formula is

𝜑′ = 𝑠1 ∧
(¬𝑠1 ∨ 𝑠2 ∨ 𝑥) ∧ (𝑠1 ∨ ¬𝑠2) ∧ (𝑠1 ∨ ¬𝑥) ∧
(𝑠2 ∨ 𝑥 ∨ ¬𝑦 ∨ 𝑦) ∧ (¬𝑠2 ∨ ¬𝑥) ∧ (¬𝑠2 ∨ 𝑦) ∧ (¬𝑠2 ∨ ¬𝑦) .

In general, we can see that 𝜑 and 𝜑′ are equisatisfiable:

• If 𝜑 has a satisfying assignment 𝛼, then we can get a satisfying assignment for 𝜑′ by extending 𝛼, setting each
new variable 𝑠𝑖 to be the truth value of its associated subformula under 𝛼. As argued above, this satisfies all
the clauses obtained from all the subformulas of 𝜑, and since𝛼 satisfies 𝜑, this also makes the literal associated
with 𝜑 itself true, so it satisfies 𝜑′.

• If 𝜑′ has a satisfying assignment 𝛼, then we claim that the same assignment (ignoring the new variables) also
satisfies 𝜑. Since 𝛼 satisfies all the clauses of 𝜑′, as argued above, each subformula of 𝜑 evaluates (under 𝛼)
to the value of the subformula’s associated variable. Moreover, the literal associated with 𝜑 itself (which is
also a clause of 𝜑′) is also true under 𝛼, so 𝛼 satisfies 𝜑.

Finally, we claim that the transformation runs in linear time, and in particular, the size of 𝜑′ is linear in the size of
𝜑. (Recall that the size of a formula is the number of literals that appears in it.) Each non-base-case (AND/OR)
subformula of 𝜑 has some 𝑘 ≥ 2 component subformulas, and is converted to clauses having a total of 3𝑘+1 < 4𝑘
literals, in 𝑂(𝑘) time. Across all such subformulas in 𝜑, the total number of components (i.e., the sum of all 𝑘) is
less than twice the number of literals in 𝜑, because each such subformula has at least two components. (In other
words, the total number of nodes in a rooted tree, where every internal node has at least two children, is less than
twice the number of leaves.) So, 𝜑′ is at most 8 times as large as 𝜑.

Modifying the proof of Cook-Levin to show that 3SAT is NP-hard

We can modify our proof of the Cook-Levin theorem to directly show that 3SAT is NP-hard. In particular, we
demonstrate how to construct 𝜑𝑉,𝑥 so that it is in conjunctive normal form. We can then apply the transformation
discussed above to turn a CNF formula into a 3CNF one.

We first observe that a CNF formula can be constructed recursively from smaller subformulas:

• A formula 𝜑 = 𝑥 with a single variable is in CNF – it has the single clause (𝑥).

• A formula 𝜑 = 𝜑1 ∧ 𝜑2 is in CNF if 𝜑1 and 𝜑2 are in CNF – it consists of the combination of the clauses in
𝜑1 and 𝜑2.

18.1. 3SAT 172

Foundations of Computer Science, Release 0.5

• A formula 𝜑 = 𝜑1 ∨ 𝜑2 is only in CNF if 𝜑1 and 𝜑2 each have a single clause – 𝜑 is then just a single clause
that combines the literals in 𝜑1 and 𝜑2.

Examining each piece of 𝜑𝑉,𝑥, we see:

• The cell-consistency subformula

𝜑cell =
⋀︁

1≤𝑖,𝑗≤𝑛𝑘

[
⋁︁
𝑠∈𝑆

𝑡𝑖,𝑗,𝑠 ∧
⋀︁

distinct 𝑠,𝑠′∈𝑆

(¬𝑡𝑖,𝑗,𝑠 ∨ ¬𝑡𝑖,𝑗,𝑠′)]

is in CNF. The inner conjunction is a conjunction of disjunctions, so it is clearly in CNF. The inner disjunction
is a single clause, so it is in CNF. We combine the two with a conjunction, and the result is also in CNF
since the two subformulas are in CNF. Finally, the outer conjunction also produces a CNF formula since the
individual pieces are in CNF.

• The acceptance subformula

𝜑accept =
⋁︁

1≤𝑖,𝑗≤𝑛𝑘

𝑡𝑖,𝑗,𝑞acc

is a single clause in CNF.

• The starting-configuration subformula

𝜑start,𝑥 = 𝑡1,1,# ∧ 𝑡1,2,𝑞start ∧ 𝜑input ∧ 𝑡1,𝑛+3,$ ∧ 𝜑cert ∧ 𝑡1,𝑛𝑘,#

is in CNF – it consists of 𝑛𝑘 clauses, each with either a single literal (e.g., (𝑡1,1,#)) or |Γ| literals (for each
clause in 𝜑cert).

• The transition formula for a window with upper-left corner at 𝑖, 𝑗

𝜑𝑖,𝑗 =
⋁︁

𝑤∈𝑊

𝜑𝑖,𝑗,𝑤

is not in CNF. The individual 𝜑𝑖,𝑗,𝑤 consist of a sequence of conjunctions, so 𝜑𝑖,𝑗 is a disjunction of conjunc-
tions, rather than a conjunction of disjunctions required for CNF. However, we can convert 𝜑𝑖,𝑗 to CNF by
applying the distributive law for ∨ and ∧. In particular, we have

(
⋀︁
𝑖

𝑎𝑖) ∨ (
⋀︁
𝑗

𝑏𝑗) =
⋀︁
𝑖,𝑗

(𝑎𝑖 ∨ 𝑏𝑗) .

We can see that this law holds if we consider two cases:

– If all 𝑎𝑖 are true, then the left-hand side is true. The right-hand side is also true – each clause (𝑎𝑖 ∨ 𝑏𝑗)
contains an 𝑎𝑖, so each clause is satisfied, which makes the formula as a whole true.

This same reasoning applies for the case when all 𝑏𝑗 are true.

– If at least one 𝑎𝑖 is false and at least one 𝑏𝑗 is false, then the left-hand side is false. The right-hand side
is also false, since there is a clause (𝑎𝑖 ∨ 𝑏𝑗) where both 𝑎𝑖 and 𝑏𝑗 are false.

How does the size of the right-hand formula compare to the left-hand one? If the two conjunctions on the left
contain 𝑚 and 𝑛 literals, respectively, then the left-hand side has 𝑚+𝑛 total literals. The right-hand side has
𝑚 · 𝑛 clauses, each with two literals, for a total size of 2𝑚𝑛. When 𝑚 = 𝑛, we go from 2𝑚 literals to a size
of 2𝑚2.

Suppose we have 𝑐 conjunctions on the left-hand side, each with 𝑚 literals. Then repeated application of the
distributive law takes us from a formula with 𝑐𝑚 literals to one with 𝑐𝑚𝑐. For 𝜑𝑖,𝑗 , we go from a size of 6|𝑊 |
in its original form to a size of |𝑊 | · 6|𝑊 | in CNF. This is exponential in the number of distinct valid windows
|𝑊 |, but this number is a characteristic of the verifier 𝑉 , not the input 𝑥. So even though it is a larger constant
than before, it is still a constant.

18.1. 3SAT 173

Foundations of Computer Science, Release 0.5

Once we have 𝜑𝑖,𝑗 in CNF, then

𝜑move,𝑉 =
⋀︁

1≤𝑖≤𝑛𝑘−1

1≤𝑗≤𝑛𝑘−2

𝜑𝑖,𝑗

is also in CNF. And while its size is larger than previously, it is only by a constant factor, and its total size is
still 𝑂(𝑛2𝑘) literals.

Since 𝜑𝑉,𝑥 is just a conjunction of the individual pieces above, it is in CNF if those pieces are each in CNF. We can
then apply the CNF-to-3CNF transformation to obtain a formula in 3CNF. Thus, if we can decide 3SAT, we can
decide an arbitrary language in NP, and 3SAT is NP-hard.

18.2 Clique

NP-completeness arises in many problems beyond Boolean satisfiability. As an example, we consider the clique prob-
lem.

For an undirected graph 𝐺 = (𝑉,𝐸), a clique is a subset 𝐶 ⊆ 𝑉 of the vertices for which there is an edge between
every pair of (distinct) vertices in 𝐶. Equivalently, the subgraph induced by 𝐶, meaning the vertices in 𝐶 and all the
edges between them, is a complete graph.

The following is an example of a clique of size four, with the vertices of the clique and the edges between them
highlighted:

We are often interested in finding a clique of maximum size in a graph, called a maximum clique for short. For instance,
if a graph represents a group of people and their individual friend relationships, we might want to find a largest set of
mutual friends—hence the name “clique”. However, this is not a decision problem; to obtain one, much like we did for
the traveling salesperson problem (page 140), here we introduce a non-negative “threshold” parameter 𝑘, which does
not exceed the number of vertices in the graph (because no clique can exceed this size):

CLIQUE = {(𝐺, 𝑘) : 𝐺 is an undirected graph that has a clique of size (at least) 𝑘} .

Since the search version of the clique problem is a maximization problem, the corresponding decision problem involves
a lower bound on the clique size. Observe that if a graph has a clique of size at least 𝑘, then it also has one of size
exactly 𝑘, because removing arbitrary vertices from a clique still results in a clique. In other words, any subset of a
clique is itself a clique.

Theorem 170 CLIQUE is NP-complete.

To prove the theorem, we show in the following two lemmas that CLIQUE is in NP, and is NP-hard.

18.2. Clique 174

Foundations of Computer Science, Release 0.5

Lemma 171 CLIQUE ∈ NP.

Proof 172 To prove the lemma we give an efficient verifier for CLIQUE, according to Definition 139. Our verifier
takes an instance—i.e., a graph 𝐺 and threshold 𝑘—and a certificate, which is a set of vertices that is claimed to
be a clique of size 𝑘 in the graph. The verifier simply checks whether this is indeed the case, i.e., whether the
certificate has 𝑘 vertices and there is an edge between each pair of these vertices.

Input: instance: an undirected graph and non-negative integer 𝑘; certificate: a subset of vertices in the graph
Output: whether the vertices form a clique of size 𝑘 in the graph

function VerifyCLIQUE((𝐺 = (𝑉,𝐸), 𝑘), 𝐶 ⊆ 𝑉)
if |𝐶| ≠ 𝑘 then reject
for all distinct 𝑢, 𝑣 ∈ 𝐶 do

if (𝑢, 𝑣) /∈ 𝐸 then reject
accept

We first analyze the running time of the verifier. The first check counts the number of vertices in the vertex subset
𝐶 ⊆ 𝑉 , which runs in linear time in the size of the graph. Then the number of loop iterations is quadratic in
the number of vertices, and each iteration can be done efficiently by looking up edges of the graph. So, the total
running time is polynomial in the size of the instance, as needed.

We now prove the verifier’s correctness. We need to show that (𝐺, 𝑘) ∈ CLIQUE if and only if there exists some
(polynomial-size) 𝐶 ⊆ 𝑉 for which VerifyCLIQUE((𝐺, 𝑘), 𝐶) accepts.

In one direction, if (𝐺, 𝑘) ∈ CLIQUE, then by definition there is some clique 𝐶 ⊆ 𝑉 of size 𝑘, which is of size
polynomial (indeed, linear) in the size of the instance (𝐺, 𝑘). In VerifyCLIQUE((𝐺, 𝑘), 𝐶), all the checks pass
because |𝐶| = 𝑘 and there is an edge between every pair of vertices in 𝐶. Thus, the verifier accepts ((𝐺, 𝑘), 𝐶),
as needed.

Conversely, if VerifyCLIQUE((𝐺, 𝑘), 𝐶) accepts for some certificate 𝐶 ⊆ 𝑉 , then by the code of the verifier,
|𝐶| = 𝑘 and there is an edge between every pair of vertices in 𝐶. So, by definition, 𝐶 is a clique of size 𝑘 in 𝐺,
hence (𝐺, 𝑘) ∈ CLIQUE, as needed. □

Lemma 173 CLIQUE is NP-hard.

To prove the lemma we will give a polynomial-time mapping reduction from the NP-hard language 3SAT. Before
doing so, let’s review the definition of 3SAT. An instance is a 3CNF formula, which is the AND of clauses that are
each the OR of three literals:

𝜑 = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (ℓ4 ∨ ℓ5 ∨ ℓ6) ∧ · · · ∧ (ℓ3𝑚−2 ∨ ℓ3𝑚−1 ∨ ℓ3𝑚) .

Each literal ℓ𝑖 is either a variable itself (e.g., 𝑥) or its negation (e.g., ¬𝑥). By definition, 3SAT is the language of
all satisfiable 3CNF formulas; a formula is satisfiable if its variables can be assigned true/false values that make the
formula evaluate to true.

Observe that a satisfying assignment simultaneously satisfies every clause, meaning that each clause has at least one
literal that is true. So, a formula with𝑚 clauses is satisfiable if and only if there is some selection of𝑚 literals, one from
each clause, that can simultaneously be made true under some assignment. This is a key fact we use in the reduction
to CLIQUE.

Proof 174 We give a polynomial-time mapping reduction 𝑓 from 3SAT to CLIQUE, showing that 3SAT ≤𝑝

CLIQUE. Since 3SAT is NP-hard, it follows that CLIQUE is NP-hard.

We need to define a polynomial-time computable function 𝑓 that transforms a given 3CNF formula 𝜑 into a

18.2. Clique 175

Foundations of Computer Science, Release 0.5

corresponding instance 𝑓(𝜑) = (𝐺, 𝑘) of the clique problem, so that 𝜑 ∈ 3SAT ⇐⇒ 𝑓(𝜑) ∈ CLIQUE. Given
a 3CNF formula 𝜑, the reduction constructs a CLIQUE instance (𝐺, 𝑘) with graph 𝐺 and threshold 𝑘 defined as
follows:

• For each literal in 𝜑, including duplicates, there is a corresponding vertex in 𝐺. So, a formula with 𝑚
clauses yields a graph 𝐺 with exactly 3𝑚 vertices.

• For each pair of vertices in 𝐺, there is an edge between them if their corresponding literals are in different
clauses of 𝜑, and are “consistent”—i.e., they can simultaneously be true. Specifically, two literals are
consistent if they are not negations of each other (i.e., 𝑥 and ¬𝑥 for some variable 𝑥). In other words, two
literals are consistent if they are the same literal, or they involve different variables.

• The threshold is set to 𝑘 = 𝑚, the number of clauses in 𝜑.

For example, the following illustrates the graphs corresponding to two different formulas having three clauses
each, where one formula is satisfiable and the other is unsatisfiable:

𝑥

𝑦

𝑧

¬𝑥 ¬𝑦 ¬𝑧

𝑥

¬𝑦

𝑧

𝑥

𝑥

𝑦

¬𝑥 ¬𝑥 𝑦

¬𝑦

¬𝑦

¬𝑦

(𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ 𝑧) (𝑥 ∨ 𝑥 ∨ 𝑦) ∧ (¬𝑥 ∨ ¬𝑥 ∨ 𝑦) ∧ (¬𝑦 ∨ ¬𝑦 ∨ ¬𝑦)

Observe that for the satisfiable formula on the left, the corresponding graph has a clique of size three (one such
clique is highlighted), while the graph for the unsatisfiable formula on the right does not have a clique of size
three.

We first show that the reduction is efficient. Creating one vertex per literal in the input formula takes linear time
in the size of the formula, and creating the edges takes quadratic time, because for each pair of literals in different
clauses, it takes constant time to determine whether they are consistent. So, the reduction is polynomial time in
the size of the input formula.

We now prove that the reduction is correct. We need to show that 𝜑 ∈ 3SAT ⇐⇒ 𝑓(𝜑) = (𝐺, 𝑘) ∈ CLIQUE.

We first show that 𝜑 ∈ 3SAT =⇒ (𝐺, 𝑘) ∈ CLIQUE. Since 𝜑 ∈ 3SAT, it is satisfiable, which means there
is some assignment 𝛼 under which each clause in 𝜑 has at least one literal that is true. We show that there is a
corresponding clique in 𝐺 of size 𝑘 = 𝑚, the number of clauses in 𝜑. Let 𝑠1, 𝑠2, . . . , 𝑠𝑚 be a selection of one
literal from each clause that is true under the assignment 𝛼. Then we claim that their corresponding vertices form
a clique in 𝐺:

• Since all the literals 𝑠𝑖 are true under assignment 𝛼, each pair of them is consistent, i.e., no two of them are
a variable and its negation.

• So, since all the literals 𝑠𝑖 come from different clauses, each pair of their corresponding vertices has an
edge between them, by construction of the graph.

Therefore, 𝐺 has a clique of size 𝑘 = 𝑚, so (𝐺, 𝑘) ∈ CLIQUE, as needed.

We now show that converse, that 𝑓(𝜑) = (𝐺, 𝑘) ∈ CLIQUE =⇒ 𝜑 ∈ 3SAT. It is important to understand that
we are not “inverting” the function 𝑓 here. Rather, we are showing that if the graph-threshold pair produced
as the output of 𝑓(𝜑) is in CLIQUE, then the input formula 𝜑 must be in 3SAT.

Since 𝑓(𝜑) = (𝐺, 𝑘 = 𝑚) ∈ CLIQUE, the output graph 𝐺 has some clique 𝐶 = {𝑐1, . . . , 𝑐𝑚} of size 𝑚. We
show that 𝜑 is satisfiable, by using the vertices in 𝐶 to construct a corresponding assignment 𝛼 that satisfies 𝜑.

18.2. Clique 176

Foundations of Computer Science, Release 0.5

• Since 𝐶 is a clique, there is an edge between every pair of vertices in 𝐶. So, by the reduction’s construction
of the graph, the vertices in 𝐶 must correspond to consistent literals from different clauses.

• Since there are 𝑚 vertices in 𝐶, they correspond to exactly one literal from each clause.

• Since these literals are consistent, it is possible for all of them to be true simultaneously. That is, no two of
these literals are a variable and its negation.

• Therefore, we can define an assignment 𝛼 to the variables of 𝜑 so that each literal corresponding to a vertex
in 𝐶 is true. That is, if a variable 𝑥 is one such literal, we set 𝑥 to be true; and if a negated variable ¬𝑥 is one
such literal, we set 𝑥 to be false. (Any variables that remain unset after this process can be set arbitrarily.)
Since all the literals in question are consistent, the assignment is well defined; there is no conflict in setting
them.

We can now see that 𝛼 is a satisfying assignment: the literals corresponding to the vertices in 𝐶 are all true under
𝛼, and they collectively come from all 𝑚 clauses, so 𝛼 satisfies 𝜑. Thus 𝜑 ∈ 3SAT, as needed. This completes
the proof. □

It is worth remarking that the above reduction from 3SAT to CLIQUE produces “special-looking” instances (𝐺, 𝑘) of
CLIQUE: the graph 𝐺 has exactly 3𝑘 vertices, which are in groups of three where there is no edge among any such
group. There is no issue with this: an (efficient) algorithm that solves CLIQUE must be correct on special instances of
this form (along with all others), so any such algorithm could also be used to (efficiently) solve 3SAT by applying the
reduction to the input formula and invoking the CLIQUE algorithm on the result. Indeed, the reduction implies that
solving CLIQUE even when it is restricted to such special instances is “at least as hard as” solving any problem in NP.

18.3 Vertex Cover

For an undirected graph 𝐺 = (𝑉,𝐸), a vertex cover is a subset 𝐶 ⊆ 𝑉 of the vertices for which every edge in the
graph is “covered” by a vertex in 𝐶. An edge 𝑒 = (𝑢, 𝑣) is covered by 𝐶 if at least one of its endpoints 𝑢, 𝑣 is in 𝐶.
So, formally, 𝐶 ⊆ 𝑉 is a vertex cover for 𝐺 if

∀𝑒 = (𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝐶 ∨ 𝑣 ∈ 𝐶 .

The following are two vertex covers for the same graph:

The cover on the left has a size of five (vertices), while the cover on the right has a size of four.

Given a graph, we are interested in finding a vertex cover of minimum size, called a minimum vertex cover for short.
Observe that 𝑉 itself is a vertex cover in all case, though it may be far from optimal.

As a motivating example for the vertex-cover problem, consider a museum that consists of a collection of interconnected
hallways, with exhibits on the walls. The museum needs to hire guards to monitor and protect the exhibits, but since

18.3. Vertex Cover 177

Foundations of Computer Science, Release 0.5

guards are expensive, it seeks to minimize the number of guards while still ensuring that each hallway is protected by
at least one guard. The museum layout can be represented as a graph, with the hallways as edges and the vertices as
hallway intersections or endpoints. A guard placed at a vertex protects the exhibits in any of the hallways adjacent to
that vertex. So, the museum wants to find a minimum vertex cover for this graph, to determine how many guards to
hire and where to place them.

As we did for the traveling salesperson problem (page 140), we first define a decision version of the vertex cover
problem, with a non-negative “budget” parameter 𝑘 that does not exceed the number of vertices in the graph:

VERTEX-COVER = {(𝐺, 𝑘) : 𝐺 is an undirected graph that has a vertex cover of size (at most) 𝑘} .

Since the search version of vertex cover is a minimization problem, the corresponding decision problem involves an
upper bound (“budget”) on the vertex cover size. Observe that if a graph has a vertex cover of size less than 𝑘, then it
also has one of size exactly 𝑘, simply by adding some arbitrary vertices. In other words, any superset of a vertex cover
is also a vertex cover.

We now show that VERTEX-COVER is NP-hard, leaving the proof that VERTEX-COVER ∈ NP as an exercise.
Combining these two results, we conclude that VERTEX-COVER is NP-complete.

Exercise 175 Show that VERTEX-COVER ∈ NP.

Lemma 176 VERTEX-COVER is NP-hard.

Before giving the formal proof, we first give the key ideas and an illustrative example. We will demonstrate a
polynomial-time mapping reduction from the NP-hard language 3SAT: given a 3CNF formula, the reduction con-
structs a graph and a budget that corresponds to the formula in a certain way, so that the formula is satisfiable if and
only if the graph has a vertex cover within the size budget.

The graph is made up of “gadget” subgraphs, one for each variable and clause in the formula. These are connected
together with appropriate edges according to the contents of the formula.

A gadget for a variable 𝑥 is a “barbell,” consisting of two vertices respectively labeled 𝑥 and ¬𝑥, and connected by an
edge. A gadget for a clause is a triangle whose three vertices are each labeled by a corresponding one of the literals.
Example variable and clause gadgets are depicted here:

Variable gadget for 𝑥 Clause gadget for (𝑥	 ∨ 	𝑦	 ∨ 	𝑧)

𝑥 ¬𝑥

𝑧

𝑥 𝑦

The reduction first creates one variable gadget for each variable, and one clause gadget for each clause. Then, it
connects these gadgets using edges as follows: it adds an edge between each clause-gadget vertex and the (unique)
variable-gadget vertex having the same literal label.

As a concrete example, consider the input formula

𝜑 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ 𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ ¬𝑧) .

To construct the corresponding graph, we start with a gadget for each variable and clause:

18.3. Vertex Cover 178

Foundations of Computer Science, Release 0.5

𝑛 variables

𝑚 clauses

𝑥 ¬𝑥 𝑦 ¬𝑦

𝑧

𝑥 𝑦

¬𝑧

¬𝑥 ¬𝑦

𝑧

𝑥 ¬𝑦

¬𝑧

¬𝑥 𝑦

𝑧 ¬𝑧

Then, we connect each clause-gadget vertex to the variable-gadget vertex having the same literal label:

𝑛 variables

𝑚 clauses

𝑥 ¬𝑥 𝑦 ¬𝑦

𝑧

𝑥 𝑦

¬𝑧

¬𝑥 ¬𝑦

𝑧

𝑥 ¬𝑦

¬𝑧

¬𝑥 𝑦

𝑧 ¬𝑧

Observe that any vertex cover of the graph must cover each variable-gadget edge, so it must have at least one vertex
from each variable gadget. Similarly, it must cover all three edges in each clause gadget, so it must have at least two
vertices from each clause gadget. All this holds even ignoring the “crossing” edges that go between the variable and
clause gadgets.

With this in mind, the reduction finally sets the budget to be 𝑘 = 𝑛 + 2𝑚, where 𝑛 is the number of variables and 𝑚
is the number of clauses in the input formula. This corresponds to asking whether there is a vertex cover having no
“additional” vertices beyond what is required by just the gadgets themselves. As the following proof shows, it turns
out that there is a vertex cover of this size if and only if the input formula is satisfiable: any satisfying assignment of
the formula yields a corresponding vertex cover of size 𝑘, and vice versa.

For example, for the above example formula and corresponding graph, setting 𝑥 = true and 𝑦 = 𝑧 = false satisfies the
formula, and the graph has a corresponding vertex cover as depicted here:

18.3. Vertex Cover 179

Foundations of Computer Science, Release 0.5

𝑛 variables

𝑚 clauses

𝑥 ¬𝑥 𝑦 ¬𝑦

𝑧

𝑥 𝑦

¬𝑧

¬𝑥 ¬𝑦

𝑧

𝑥 ¬𝑦

¬𝑧

¬𝑥 𝑦

𝑧 ¬𝑧

Conversely, we can show that for any vertex cover of size 𝑘 = 𝑛+2𝑚 in the graph, there is a corresponding satisfying
assignment for 𝜑, obtained by setting the variables so that the literals of all the variable-gadget vertices in the cover are
true.

Proof 177 We give a polynomial-time mapping reduction from 3SAT to VERTEX-COVER, showing that
3SAT ≤𝑝 VERTEX-COVER. Since 3SAT is NP-hard, it follows that VERTEX-COVER is NP-hard as well.

We need to define a polynomial-time computable function 𝑓 that transforms a given 3CNF formula 𝜑 into a
corresponding instance 𝑓(𝜑) = (𝐺, 𝑘) of the vertex-cover problem, so that 𝜑 ∈ 3SAT ⇐⇒ (𝐺, 𝑘) ∈
VERTEX-COVER. The function 𝑓 constructs 𝐺 and 𝑘 as follows:

• For each variable 𝑥 in 𝜑, it creates a “variable gadget” consisting of two vertices, respectively labeled by
the literals 𝑥 and ¬𝑥, with an edge between them.

• For each clause (ℓ𝑖 ∨ ℓ𝑗 ∨ ℓ𝑘) in 𝜑, where ℓ𝑖, ℓ𝑗 , ℓ𝑘 are literals, it creates a “clause gadget” consisting of
three vertices, respectively labeled by these literals, with an edge between each pair of these vertices (i.e.,
a triangle).

• For each vertex of each clause gadget, it creates an edge between that vertex and the (unique) variable-gadget
vertex having the same label. That is, a clause-gadget vertex labeled by literal 𝑥 (respectively, ¬𝑥) has an
edge to the variable-gadget vertex labeled 𝑥 (respectively, ¬𝑥).

• Finally, set 𝑘 = 𝑛+ 2𝑚 where 𝑛,𝑚 are respectively the number of variables and clauses in 𝜑.

To see that the reduction is efficient, observe that there are 2𝑛+3𝑚 vertices in 𝐺, with 𝑛 edges within the variable
gadgets, 3𝑚 edges within the clause gadgets, and 3𝑚 edges that cross between the clause and variable gadgets,
for a total of 𝑂(𝑚 + 𝑛) edges. Thus, 𝐺 has size 𝑂(𝑛 +𝑚), and it (along with 𝑘) can be constructed efficiently
by iterating over the input formula 𝜑.

We now show that the reduction is correct. We need to show that 𝜑 ∈ 3SAT ⇐⇒ 𝑓(𝜑) = (𝐺,𝑛 + 2𝑚) ∈
VERTEX-COVER.

We first show that 𝜑 ∈ 3SAT =⇒ 𝑓(𝜑) = (𝐺,𝑛+2𝑚) ∈ VERTEX-COVER. In other words, if 𝜑 is satisfiable,
then 𝐺 has a vertex cover of size 𝑛 + 2𝑚. Since 𝜑 is satisfiable, there is some satisfying assignment 𝛼 under
which each clause in 𝜑 has at least one literal that is true. We show by construction that there is a corresponding
vertex cover 𝐶 of size 𝑛+ 2𝑚 in 𝐺. We define 𝐶 as follows:

• For each variable gadget, include in 𝐶 the vertex labeled by the literal that is true under 𝛼. That is, for each
variable 𝑥’s gadget, place the vertex labeled by 𝑥 in 𝐶 if 𝛼 assigns 𝑥 to be true, otherwise place the vertex
labeled ¬𝑥 in 𝐶.

18.3. Vertex Cover 180

Foundations of Computer Science, Release 0.5

Observe that exactly one vertex from each of the variable gadgets is in 𝐶, and these 𝑛 vertices cover all 𝑛
of the variable-gadget edges.

• In each clause gadget, observe that at least one of its three vertices is labeled by a literal that is true under
𝛼, because 𝛼 satisfies all the clauses in 𝜑. Identifying an arbitrary one of these vertices per clause gadget,
include in 𝐶 the other two vertices of each gadget.

Observe that 𝐶 has 2𝑚 clause-gadget vertices, and these cover all 3𝑚 of the clause-gadget edges.

As we have just seen, 𝐶 has 𝑛 + 2𝑚 vertices in total, and covers all the edges that are “internal” to the gadgets.
So, it just remains to show that 𝐶 also covers all the “crossing” edges that go between the variable gadgets and
clause gadgets.

To see this, recall that the crossing edges are those that go from each clause-gadget vertex 𝑣 to the variable-gadget
vertex having the same literal label ℓ. If 𝑣 ∈ 𝐶, then its crossing edge is covered by 𝐶, so now suppose that
𝑣 /∈ 𝐶. Then by construction of 𝐶, 𝑣’s literal ℓ is true under the assignment 𝛼. Therefore, the variable-gadget
vertex labeled ℓ is in 𝐶, and hence 𝑣’s crossing edge is covered by 𝐶. Because this reasoning holds for every
clause-gadget vertex, all the crossing edges in 𝐺 are covered by 𝐶. We conclude that 𝐶 is a vertex cover of 𝐺,
hence (𝐺, 𝑘) ∈ VERTEX-COVER, as needed.

We now show the converse direction, that (𝐺,𝑛 + 2𝑚) ∈ VERTEX-COVER =⇒ 𝜑 ∈ 3SAT. In other words,
if 𝐺 has a vertex cover 𝐶 of size at most 𝑛 + 2𝑚, then 𝜑 has a satisfying assignment. Indeed, we will show by
construction that for any such 𝐶, there is a corresponding satisfying assignment for 𝜑.

As observed above, any vertex cover of 𝐺 must have at least one vertex from each variable gadget (to cover that
gadget’s edge), and at least two vertices from each clause gadget (to cover that gadget’s three edges). So, since 𝐶
is a vertex cover of size at most 𝑛+ 2𝑚, it must have size exactly 𝑛+ 2𝑚, and therefore 𝐶 has:

• exactly one vertex from each variable gadget, and

• exactly two vertices from each clause gadget.

Based on this, we define an assignment for 𝜑 as follows: for each variable 𝑥’s gadget, identify which one of its
vertices (labeled either 𝑥 or ¬𝑥) is in 𝐶, and set the value of 𝑥 so that the label of this vertex is true. That is, if the
variable-gadget vertex labeled 𝑥 is in 𝐶, set 𝑥 to be true; otherwise, set 𝑥 to be false. (Note that this assignment
is well defined because 𝐶 has exactly one vertex from each variable gadget.)

We show that this assignment satisfies 𝜑, using the fact that 𝐶 is a vertex cover. Consider an arbitrary clause in
𝜑; we claim that the assignment satisfies it (and hence the entire formula) because the clause has at least one true
literal.

In the gadget corresponding to the clause, there is exactly one vertex 𝑣 that is not in 𝐶, which is labeled by some
literal ℓ that appears in the clause. Recall that the other endpoint of 𝑣’s “crossing edge” is the variable-gadget
vertex having label ℓ. Since 𝐶 covers this crossing edge, and 𝑣 /∈ 𝐶, this other endpoint must be in 𝐶. So by
definition, ℓ is set to true under the assignment. Finally, since ℓ is one of the literals in the clause in question, the
assignment satisfies the clause, as claimed. This completes the proof. □

Exercise 178 a) An independent set of an undirected graph 𝐺 = (𝑉,𝐸) is a subset of the vertices 𝐼 ⊆ 𝑉
such that no two vertices in 𝐼 have an edge between them. Define the language (with non-negative threshold
𝑘 ≤ |𝑉 |)

INDEPENDENT-SET = {(𝐺, 𝑘) : 𝐺 is an undirected graph with an independent set of size at least 𝑘} .

Show that VERTEX-COVER ≤𝑝 INDEPENDENT-SET.

Hint: If 𝐺 has a vertex cover of size 𝑚, what can be said about the vertices that are not in the cover?

18.3. Vertex Cover 181

Foundations of Computer Science, Release 0.5

b) Recall the language

CLIQUE = {(𝐺, 𝑘) : 𝐺 is an undirected graph that has a clique of size at least 𝑘} .

Show that INDEPENDENT-SET ≤𝑝 CLIQUE.

18.4 Set Cover

We now consider another problem, that of hiring workers for a project. To complete the project, we need workers that
collectively have some set of skills. For instance, to build a house, we might need an architect, a general contractor,
an engineer, an electrician, a plumber, a painter, and so on. There is a pool of candidate workers, where each worker
has a certain set of skills. For example, there might be a worker who is proficient in plumbing and electrical work,
another who can put up drywall and paint, etc. Our goal is to hire a team of workers of minimum size that “covers” all
the required skills, i.e., for each skill, at least one hired worker has that skill.

We formalize this problem as follows. We are given an instance that consists of a set 𝑆, representing the required skills,
along with some subsets 𝑆𝑖 ⊆ 𝑆, representing the set of skills that each worker has. We wish to select as few of the 𝑆𝑖

as possible to cover the set 𝑆. In other words, we want to find a smallest set of indices 𝐶 such that⋃︁
𝑖∈𝐶

𝑆𝑖 = 𝑆 .

As a concrete example, consider the following small instance:

𝑆 = {1, 2, 3, 4, 5, 6, 7}
𝑆1 = {1, 2, 3}
𝑆2 = {3, 4, 6, 7}
𝑆3 = {1, 4, 7}
𝑆4 = {1, 2, 6}
𝑆5 = {3, 5, 7}
𝑆6 = {4, 5} .

There is no cover of size two: in order to cover skill 5, we must select subset 𝑆5 or 𝑆6, and no single subset covers all
the remaining skills. However, there are several covers of size three. One example is 𝐶 = {1, 2, 6}, which gives us⋃︁

𝑖∈𝐶

𝑆𝑖 = 𝑆1 ∪ 𝑆2 ∪ 𝑆6

= {1, 2, 3} ∪ {3, 4, 6, 7} ∪ {4, 5}
= 𝑆 .

We now define a language that corresponds to the decision version of the set-cover problem. As with vertex cover, we
include a budget 𝑘 for the size of the cover, which does not exceed the number of given subsets.

SET-COVER = {(𝑆, 𝑆1, 𝑆2, . . . , 𝑆𝑛, 𝑘) : ∃ 𝐶 ⊆ {1, . . . , 𝑛} of size (at most) 𝑘 s.t.
⋃︁
𝑖∈𝐶

𝑆𝑖 = 𝑆} .

It is straightforward to show that SET-COVER ∈ NP: a certificate is a set of indices 𝐶 ⊆ {1, . . . , 𝑛}, and the verifier
simply checks that |𝐶| ≤ 𝑘 and that

⋃︀
𝑖∈𝐶 𝑆𝑖 = 𝑆, which can be done efficiently.

The following lemma shows that, like 3SAT and VERTEX-COVER, SET-COVER is a “hardest” problem in NP.

Lemma 179 SET-COVER is NP-hard.

18.4. Set Cover 182

Foundations of Computer Science, Release 0.5

Before providing the formal proof, we give the key ideas and an illustrative example. First, we choose a suitable NP-
hard language to reduce from. While there are many choices that could work, it is preferable to choose a language that
is “defined similarly” to the target language, because this typically makes the reduction and analysis simpler and less
error prone.

For this reason, we will demonstrate a polynomial-time mapping reduction from the NP-hard language
VERTEX-COVER. Given a VERTEX-COVER instance (𝐺 = (𝑉,𝐸), 𝑘), the reduction needs to construct an
SET-COVER instance (𝑆, 𝑆1, . . . , 𝑆𝑛, 𝑘

′)—i.e., a set 𝑆, subsets 𝑆𝑖 ⊆ 𝑆, and budget 𝑘′—so that 𝐺 has a vertex cover
of size (at most) 𝑘 if and only if 𝑆 can be covered by (at most) 𝑘′ of the subsets.

To help conceive of such a reduction, it is first useful to identify the specific similarities between the VERTEX-COVER
and SET-COVER problems. The VERTEX-COVER problem asks to cover all the edges of a given graph by some
limited number of its vertices budget, where each vertex covers its incident edges. The SET-COVER problem asks to
cover all the elements of a set (e.g., of skills) by a limited number of some given subsets (e.g., workers). So, a natural
idea is for the reduction to generate a set that corresponds to the edges of the graph (these are the objects to be covered),
and subsets that correspond to the vertices—specifically, each subset is the set of edges incident to its corresponding
vertex. Because the vertices are in correspondence with the subsets, the reduction leaves the budget unchanged.

As an example, consider the following graph, where for convenience we have numbered the vertices and edges.

1

2
3

4

5

6 7
8

9

10

11

𝑆!

𝑆" 𝑆#

𝑆$

𝑆%

𝑆&

𝑆'

This graph has a vertex cover of size four, consisting of the vertices labeled with indices 2, 4, 5, 6.

On this graph, the reduction outputs the following sets:

𝑆 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
𝑆1 = {2, 5, 6}
𝑆2 = {3, 7, 8, 9}
𝑆3 = {9, 10}
𝑆4 = {4, 6, 8, 11}
𝑆5 = {5, 7, 10, 11}
𝑆6 = {1, 2, 3, 4}
𝑆7 = {1} .

Observe that 𝐶 = {2, 4, 5, 6} is a set cover of size four, and corresponds to the vertex cover mentioned above. This
holds more generally: any vertex cover of the graph corresponds to a set cover, by taking the subsets that correspond
to the selected vertices. And in the opposite direction, for any selection of subsets that covers 𝑆, the corresponding
vertices cover all the edges of the graph.

18.4. Set Cover 183

Foundations of Computer Science, Release 0.5

Proof 180 We prove that VERTEX-COVER ≤𝑝 SET-COVER, and hence SET-COVER is NP-hard.

We need to define a polynomial-time computable function 𝑓 that transforms a given VERTEX-COVER in-
stance (𝐺, 𝑘) into a corresponding instance 𝑓(𝐺, 𝑘) = (𝑆, 𝑆1, . . . , 𝑆𝑛, 𝑘) of SET-COVER, so that (𝐺, 𝑘) ∈
VERTEX-COVER ⇐⇒ 𝑓(𝐺, 𝑘) ∈ SET-COVER.

Following the above ideas, the function outputs the set of edges, and for each vertex, a subset consisting of the
edges incident to that vertex. Formally, we define 𝑓(𝐺 = (𝑉,𝐸), 𝑘) = (𝑆, 𝑆𝑣 for every 𝑣 ∈ 𝑉, 𝑘), where 𝑆 = 𝐸
and

𝑆𝑣 = {𝑒 ∈ 𝐸 : 𝑒 is incident to 𝑣, i.e., 𝑒 = (𝑢, 𝑣) for some 𝑢 ∈ 𝑉 } .

Observe that this function can be computed efficiently, since for each vertex it just looks up all the edges incident
to that vertex, which can be done by a naïve algorithm in 𝑂(|𝑉 | · |𝐸|) time.

We now show that the reduction is correct. We need to show that (𝐺 = (𝑉,𝐸), 𝑘) ∈ VERTEX-COVER ⇐⇒
𝑓(𝐺, 𝑘) = (𝑆, 𝑆𝑣 for all 𝑣 ∈ 𝑉, 𝑘) ∈ SET-COVER.

For this purpose, the key property of the reduction is that a subset of vertices 𝐶 ⊆ 𝑉 is a vertex cover of 𝐺 if and
only if the subsets 𝑆𝑣 for 𝑣 ∈ 𝐶 cover 𝑆. This is because the set of edges covered by the vertices in 𝐶 is⋃︁

𝑣∈𝐶

{𝑒 ∈ 𝐸 : 𝑒 is incident to 𝑣} =
⋃︁
𝑣∈𝐶

𝑆𝑣 .

Since 𝐸 = 𝑆, the left-hand side equals 𝐸 (i.e., 𝐶 is a vertex cover of 𝐺) if and only if the right-hand side equals
𝑆 (i.e., the subsets 𝑆𝑣 for 𝑣 ∈ 𝐶 cover 𝑆).

Correctness then follows immediately from this key property: 𝐺 has a vertex cover of size (at most) 𝑘 if and only
if some (at most) 𝑘 of the subsets 𝑆𝑣 cover 𝑆. □

We conclude our discussion by observing that by the above reduction, we can see VERTEX-COVER as a natural special
case of SET-COVER. Specifically, using the subsets of incident edges means that every element of 𝑆 = 𝐸 belongs to
exactly two of the subsets 𝑆𝑣 (namely, the ones corresponding to the two endpoints of the edge). This is a special case of
set cover; in general, any element is allowed to be in any number (including zero) of the given subsets. An algorithm for
SET-COVER must be correct on all instances, so in particular it must be correct on these special cases; combined with
the reduction, this would also yield a correct algorithm for VERTEX-COVER.63 (This phenomenon is similar to what
we observed about the special kinds of graphs constructed in the above reduction from 3SAT to VERTEX-COVER.)

18.5 Hamiltonian Cycle

In a graph𝐺, a Hamiltonian path from vertex 𝑠 to vertex 𝑡 is a path that starts at 𝑠, ends at 𝑡, and visits each vertex exactly
once. A Hamiltonian cycle is a cycle that visits every vertex exactly once. The graph may be directed or undirected;
we focus primarily on the undirected case, but everything we do here easily extends to the directed case as well.

For example, 𝐺1 below has a Hamiltonian cycle, as well as a Hamiltonian path from 𝑠1 to 𝑡, but it does not have a
Hamiltonian path from 𝑠2 to 𝑡. On the right, 𝐺2 has a Hamiltonian path from 𝑠 to 𝑡, but it does not have a Hamiltonian
cycle.

63 Because both VERTEX-COVER and SET-COVER are NP-complete, they can each be Karp-reduced to each other. However, the reduction
from SET-COVER to VERTEX-COVER is not as straightforward as the reverse direction, because not every SET-COVER instance corresponds to
a VERTEX-COVER instance in a “natural, simple” way. In particular, the reduction 𝑓 given above is not surjective, so it is not invertible on an
arbitrary SET-COVER instance.

18.5. Hamiltonian Cycle 184

Foundations of Computer Science, Release 0.5

𝑠

𝑡
𝐺!

𝑠"

𝑡

𝑠!

𝐺"
Two natural decision problems are whether a given graph has a Hamiltonian cycle, and whether it has a Hamiltonian
path from one given vertex to another. The associated languages are defined as follows:

HAMPATH = {(𝐺, 𝑠, 𝑡) : 𝐺 is a graph with a Hamiltonian path from 𝑠 to 𝑡}
HAMCYCLE = {𝐺 : 𝐺 is a graph with a Hamiltonian cycle} .

Both languages are in NP: a certificate is a claimed Hamiltonian path or cycle (as appropriate) in the graph, and the
verifier merely needs to check whether it meets the required conditions (in particular, that it visits every vertex exactly
once), which can be done in polynomial time in the size of the instance.

We claim without proof that HAMPATH is NP-hard; it is possible to reduce 3SAT to HAMPATH, but the reduction is
quite complicated, so we will not consider it here. Instead, we prove the following.

Lemma 181 HAMPATH ≤𝑝 HAMCYCLE, and hence HAMCYCLE is NP-hard.

Before giving the formal proof, we explore an “almost correct” attempt, which motivates a fix to yield a correct reduc-
tion.

We need to demonstrate an efficient transformation that maps an arbitrary HAMPATH instance (𝐺, 𝑠, 𝑡) to a
HAMCYCLE instance 𝐺′, such that 𝐺 has a Hamiltonian path from 𝑠 to 𝑡 if and only if 𝐺′ has a Hamiltonian cy-
cle.

As a first natural attempt, we consider a reduction that constructs a new graph 𝐺′ that is equal to 𝐺, but with an
additional edge between 𝑠 and 𝑡, if there isn’t already one in 𝐺. It is easy to see that if 𝐺 has a Hamiltonian path
from 𝑠 to 𝑡, then 𝐺′ has a Hamiltonian cycle, which simply follows a Hamiltonian path from 𝑠 to 𝑡, then returns to
𝑠 via the (𝑠, 𝑡) edge. So, this reduction maps any “yes” instance of HAMPATH to a “yes” instance of HAMCYCLE.
Unfortunately, it does not map every “no” instance of HAMPATH to a “no” instance of HAMCYCLE, so the reduction
is not correct. The following illustrates the reduction on example “no” and “yes” instances of HAMPATH, with the
dotted line representing the added edge:

𝑠

𝑡

𝑠!

𝑡
In the original graph on the left, there is no Hamiltonian path from 𝑠2 to 𝑡, yet the new graph does have a Hamiltonian
cycle, which just uses the original edges.

The key problem with this reduction attempt is that it does not “force” a Hamiltonian cycle to use the (𝑠, 𝑡) edge.
(Indeed, this is the case for the above counterexample.) However, if a Hamiltonian cycle does use the (𝑠, 𝑡) edge, then
we could drop that edge from the cycle to obtain a Hamiltonian path in the original graph. (This works regardless of

18.5. Hamiltonian Cycle 185

Foundations of Computer Science, Release 0.5

whether that edge is in the original graph.) So, if the reduction can somehow ensure that any Hamiltonian cycle in the
constructed graph must use specific added edge(s) between 𝑠 and 𝑡, the basic approach behind the first attempt can be
made to work.

To do this, we define a reduction that adds a new vertex, with edges to both 𝑠 and 𝑡, as in the following:

𝑠

𝑡

𝑢

𝑠!

𝑡
𝑢

Here the new graph on the left does not have a Hamiltonian cycle, and the new graph on the right does, which are
correct outcomes in these cases. More generally, if there is a Hamiltonian cycle in the constructed graph, then it must
visit the new vertex exactly once, so it must use the two new edges consecutively. Remove these two edges from the
cycle yields a Hamiltonian path from 𝑠 to 𝑡, as needed. We now proceed formally.

Proof 182 We need to define a polynomial-time computable function 𝑓 that transforms a given HAMPATH
instance (𝐺, 𝑠, 𝑡) into a corresponding instance 𝐺′ = 𝑓(𝐺, 𝑠, 𝑡) of HAMCYCLE, so that (𝐺, 𝑠, 𝑡) ∈
HAMPATH ⇐⇒ 𝐺′ = 𝑓(𝐺, 𝑠, 𝑡) ∈ 𝐻𝐶.

On input (𝐺 = (𝑉,𝐸), 𝑠, 𝑡), the reduction creates a new vertex 𝑢 /∈ 𝑉 and outputs the graph

𝐺′ = 𝑓(𝐺, 𝑠, 𝑡) = (𝑉 ′ = 𝑉 ∪ {𝑢}, 𝐸′ = 𝐸 ∪ {(𝑠, 𝑢), (𝑡, 𝑢)}) .

The function is clearly efficient, since it merely adds one new vertex and two edges to the input graph.

We now show that the reduction is correct. We first show that (𝐺, 𝑠, 𝑡) ∈ HAMPATH =⇒ 𝐺′ = 𝑓(𝐺, 𝑠, 𝑡) ∈
HAMCYCLE. By hypothesis, there exists a Hamiltonian path 𝑃 from 𝑠 to 𝑡 in 𝐺. Then 𝐺′ ∈ HAMCYCLE
because there is a corresponding Hamiltonian cycle in 𝐺′: it starts at 𝑠, goes to 𝑡 via path 𝑃 (which is a path in
𝐺′), then takes the new edges from 𝑡 to 𝑢, and 𝑢 back to 𝑠. This is a clearly a cycle in 𝐺′, and it is Hamiltonian
because 𝑃 visits every vertex in 𝑉 exactly once, and the two new edges merely visit 𝑢 and return to the start, so
every vertex in 𝑉 ′ = 𝑉 ∪ {𝑢} is visited exactly once.

Now we show that 𝐺′ = 𝑓(𝐺, 𝑠, 𝑡) ∈ HAMCYCLE =⇒ (𝐺, 𝑠, 𝑡) ∈ HAMPATH. By hypothesis, there is a
Hamiltonian cycle 𝐶 in 𝐺′; we show that there is a corresponding Hamiltonian path from 𝑠 to 𝑡 in 𝐺. Since 𝐶 is a
cycle that visits every vertex exactly once, we can view it as starting and ending at any vertex we like, in particular
the new vertex 𝑢. Because by construction 𝑢’s only edges are the two new ones to 𝑠 and 𝑡, we can view the cycle
𝐶 as starting with edge (𝑢, 𝑠) and ending with edge (𝑡, 𝑢). Removing these edges from the cycle, what remains is
a path from 𝑠 to 𝑡, and it is Hamiltonian in 𝐺 because 𝐶 visits every vertex in 𝑉 ′ = 𝑉 ∪ {𝑢} exactly once, hence
removing the new edges visits every vertex in 𝑉 exactly once. □

Exercise 183 Modify the above reduction and proof to work for directed graphs.

Exercise 184 Define the language

LONG-PATH = {(𝐺, 𝑘) : 𝐺 is an undirected graph with a simple path of length 𝑘}

A simple path is a path without any cycles. Show that LONG-PATH is NP-complete.

18.5. Hamiltonian Cycle 186

Foundations of Computer Science, Release 0.5

Exercise 185 Recall the traveling salesperson language:

TSP = {(𝐺, 𝑘) : 𝐺 is a weighted graph that has a tour of total weight at most 𝑘} .

Show that TSP is NP-hard by proving that HAMCYCLE ≤𝑝 TSP.

18.6 Concluding Remarks

We have explored only the tip of the iceberg when it comes to NP-complete problems. Such problems are every-
where, including constraint satisfaction (SAT, 3SAT), covering problems (vertex cover, set cover), resource allocation
(knapsack, subset sum), scheduling, graph coloring, model checking, social networks (clique, maximum cut), routing
(HAMPATH, TSP), games (Sudoku, Battleship, Super Mario Brothers, Pokémon), and so on. An efficient algorithm
for any one of these problems yields efficient algorithms for all of them. So, either all of them are efficiently solvable,
or none of them are.

The skills to reason about a problem and determine whether it is NP-hard are critical. Researchers have been working
for decades to find an efficient algorithm for an NP-complete problem, to no avail. This means it would require an
enormous breakthrough to do so, and may very well be impossible. Instead, when we encounter such a problem, a
better path is to focus on approximation algorithms, which we turn to next.

18.6. Concluding Remarks 187

CHAPTER

NINETEEN

SEARCH PROBLEMS AND SEARCH-TO-DECISION REDUCTIONS

Thus far, we have focused our attention on decision problems, formalized as languages. We now turn to search (or
functional) problems—those that may ask for more than just a yes/no answer. Most algorithmic problems we encounter
in practice are typically phrased as search problems. Some examples of (computable) search problems include:64

• Given an array, sort it.

• Given two strings, find a largest common subsequence of the strings.

• Given a weighted graph and starting and ending vertices, find a shortest path from the start to the end.

• Given a Boolean formula, find a satisfying assignment, if one exists.

• Given a graph, find a Hamiltonian cycle in the graph, if one exists.

• Given a graph, find a largest clique in the graph.

• Given a graph, find a smallest vertex cover in the graph.

In general, a search problem may be:

• an exact problem, such as finding a satisfying assignment or a Hamiltonian path;

• a minimization problem, such as finding a shortest path or a minimum vertex cover;

• a maximization problem, such as finding a largest common subsequence or a maximum clique.

Minimization and maximization problems are also called optimization problems.

Recall that for each kind of search problem, we can define a corresponding decision problem.65 For an exact problem,
the corresponding decision problem is whether there exists a solution that meets the required criteria. The following is
an example:

SAT = {𝜑 : 𝜑 is a satisfiable Boolean formula} .

For minimization and maximization problems, we introduce a budget or threshold. Recall the following examples:

CLIQUE = {(𝐺, 𝑘) : 𝐺 is an undirected graph that has a clique of size (at least) 𝑘}
VERTEX-COVER = {(𝐺, 𝑘) : 𝐺 is an undirected graph that has a vertex cover of size (at most) 𝑘} .

We have seen that the languages SAT, CLIQUE, and VERTEX-COVER areNP-complete. How do the search problems
compare in difficulty to their respective decision problems?

First, given an oracle (or efficient algorithm) that solves a search problem, we can efficiently decide the corresponding
language. In other words, there is an efficient Turing reduction from the decision problem to the search problem, so the
decision problem is “no harder than” the search problem. For instance, given an oracle that finds a satisfying assignment

64 Kolmogorov complexity (page 267) is an example of an uncomputable functional problem.
65 We previously saw that a functional problem has an equivalent formulation as a decision problem (page 267). However, this correspondence

was based on translating a functional problem to a sequence of decision problems on the binary representation of the answer. This is different than
what we are considering now, which is between a search problem and a “natural” formulation of a corresponding decision problem.

188

Foundations of Computer Science, Release 0.5

(if one exists) for a given Boolean formula, we can decide the language SAT simply by calling the oracle on the input
formula, accepting if it returns a satisfying assignment, and rejecting otherwise. As another example, given an oracle
that finds a largest clique in a given graph, we can decide the language CLIQUE as follows: on input a graph 𝐺 and a
threshold 𝑘, simply call the oracle on 𝐺 and check whether the size of the returned clique (which is a largest clique in
𝐺) is at least 𝑘.

What about the other direction, of efficiently reducing a search problem to its decision version? For example, if we
have an oracle (or efficient algorithm) 𝐷 that decides the language CLIQUE, can we use it to efficiently find a clique
of maximum size in a given graph? In other words, is there an efficient Turing reduction from the search version of the
max-clique problem to the decision version? It turns out that the answer is yes, though proving this is more involved
than in the other direction.

The first step is to find the size 𝑘* of a largest clique in the input graph 𝐺 = (𝑉,𝐸). We do this by calling 𝐷(𝐺, 𝑘) for
each value of 𝑘 from |𝑉 | down to 1, stopping at the first value 𝑘* for which 𝐷 accepts.

Input: an undirected graph
Output: the size of (number of vertices in) a largest clique in the graph

function SizeMaxClique(𝐺 = (𝑉,𝐸))
for 𝑘 = |𝑉 | down to 1 do

if 𝐷(𝐺, 𝑘) accepts then return 𝑘* = 𝑘

Since a clique in 𝐺 is a subset of the vertex set 𝑉 , the size 𝑘* of a largest clique is between 1 and |𝑉 |, inclusive. So,
𝐷(𝐺, 𝑘) must accept for at least one value of 𝑘 in that range. By design, SizeMaxClique outputs the largest such 𝑘,
so it is correct. The algorithm is also efficient, since it makes as most |𝑉 | calls to the oracle (or efficient algorithm) 𝐷.

Note that in general for other optimization problems, a linear search to find the optimal size or value might not be
efficient; it depends on how the number of possible values relates to the input size. For the max-clique problem, the
size of the search space is linear in the input size—there are |𝑉 | possible answers—so a linear search suffices. For other
problems, the size of the search space might be exponential in the input size, in which case we should use a binary
search.

Once we have determined the size of a largest clique, we can then use the oracle to find a clique of that size. A strategy
that works for many problems is a “destructive” one, where we use the oracle to determine which pieces of the input
to remove until all we have left is an object we seek. To find a clique of maximum size, we consider each vertex,
temporarily discarding it and all its incident edges, and query the oracle to see if the reduced graph still has a clique of
the required size. If so, the vertex is unnecessary—there is a largest clique that does not use the vertex—so we remove
it permanently. Otherwise, the discarded vertex is part of every largest clique, so we undo its temporary removal. We
perform this check for all the vertices in sequence. By a careful (and non-obvious) argument, it can be proved that at
the end, we are left with just a largest clique in the original graph, and no extraneous vertices. The formal pseudocode
and analysis is as follows.

Input: an undirected graph 𝐺 and the size 𝑘* of a largest clique in 𝐺
Output: a largest clique in 𝐺

function FindMaxClique(𝐺 = (𝑉,𝐸), 𝑘*)
for all 𝑣 ∈ 𝑉 do

let 𝐺′ be 𝐺, but with 𝑣 and all its incident edges removed
if 𝐷(𝐺′, 𝑘*) accepts then

𝐺 = 𝐺′
return 𝐶 = 𝑉 (𝐺), the set of (remaining) vertices in 𝐺

It is straightforward to see that the algorithm is efficient: it loops over each vertex exactly once, temporarily remov-
ing it and its incident edges from the graph, which can be done efficiently, and then invoking the oracle (or efficient
algorithm).

189

Foundations of Computer Science, Release 0.5

Lemma 186 The above FindMaxClique algorithm is correct, i.e., it outputs a clique of size 𝑘*, the maximum
clique size in the input graph (by hypothesis).

Proof 187 We first claim that the algorithm outputs a set of vertices 𝐶 ⊆ 𝑉 of the original graph 𝐺 that contains
a clique of size 𝑘*. To see this, observe that the algorithm maintains the invariant that 𝐺 has a clique of size 𝑘* at
all times. This holds for the original input by hypothesis, and the algorithm changes 𝐺 only when it sets 𝐺 = 𝐺′

where 𝐷(𝐺′, 𝑘*) accepts, which means that 𝐺′ has a clique of size 𝑘* (by hypothesis on 𝐷). So, the claimed
invariant is maintained, and therefore the output set of vertices 𝐶 = 𝑉 (𝐺) contains a clique of size 𝑘*.

Now we prove the lemma statement, that the output set 𝐶 is a clique of size 𝑘*, with no additional vertices. By the
above argument, 𝐶 contains a clique 𝐾 ⊆ 𝐶 of size 𝑘*. We now show that 𝐶 has no additional vertices beyond
those in 𝐾, i.e., 𝐶 = 𝐾, which proves the lemma. Let 𝑣 ∈ 𝑉 ∖𝐾 be an arbitrary vertex of the original graph that
is not in 𝐾. At some point, the algorithm temporarily removed 𝑣 from the graph to get some 𝐺′. Since 𝐾 ⊆ 𝐶
remained in the graph throughout the entire execution (except for temporary removals) and 𝑣 /∈ 𝐾, the call to
𝐷(𝐺′, 𝑘*) accepted, and hence 𝑣 was permanently removed from the graph. So, we have shown that every vertex
not in 𝐾 was permanently removed when it was considered, and therefore 𝐶 = 𝐾, as claimed. □

There are also search-to-decision reductions for minimization problems; here we give one for the vertex-cover problem.
Suppose we have an oracle (or efficient algorithm) 𝐷 that decides the language VERTEX-COVER. We can use it to
efficiently find a minimum vertex cover as follows. Given an input graph 𝐺 = (𝑉,𝐸), we do the following:

• First, find the size 𝑘* of a smallest vertex cover by calling 𝐷(𝐺, 𝑘) for each 𝑘 from 0 to |𝑉 |, stopping at the first
value 𝑘* for which 𝐷 accepts. So, 𝑘* is then the size of a smallest vertex cover.

• For each vertex 𝑣 ∈ 𝑉 , temporarily remove it and all its incident edges from the graph, and ask 𝐷 whether this
“reduced” graph has a vertex cover of size at most 𝑘*−1. If so, recursively find such a vertex cover in the reduced
graph, and add 𝑣 to it to get a size-𝑘* vertex cover of 𝐺, as desired. Otherwise, restore 𝑣 and its edges to the
graph, and continue to the next vertex.

The full search algorithm and analysis is as follows:

Input: an undirected graph 𝐺
Output: the size of a smallest vertex cover of 𝐺

function SizeMinVertexCover(𝐺)
𝑘 = 0
while 𝐷(𝐺, 𝑘) rejects do

𝑘 = 𝑘 + 1
return 𝑘* = 𝑘

Input: an undirected graph 𝐺 and the size 𝑘* of a smallest vertex cover of 𝐺
Output: a smallest vertex cover of 𝐺

function FindMinVertexCover(𝐺 = (𝑉,𝐸), 𝑘*)
if 𝑘* = 0 then ◁ base case

return ∅
for all 𝑣 ∈ 𝑉 do

let 𝐺′ be 𝐺, but with 𝑣 and all its incident edges removed
if 𝐷(𝐺′, 𝑘* − 1) accepts then

return {𝑣}∪ FindMinVertexCover(𝐺′, 𝑘* − 1)

SizeMinVertexCover is correct because the size of a smallest vertex cover in 𝐺 = (𝑉,𝐸) is between 0 and |𝑉 |
(inclusive), and it is the smallest 𝑘 in this range for which 𝐷(𝐺, 𝑘) accepts, by hypothesis on 𝐷. Also, this algorithm
it is efficient because it calls the oracle (or efficient algorithm) 𝐷 at most |𝑉 | + 1 times, which is linear in the input
size.

Lemma 188 FindMinVertexCover is correct and efficient.

190

Foundations of Computer Science, Release 0.5

Proof 189 First we show correctness. The base case 𝑘* = 0 is clearly correct, because by the input precondition,
𝐺 has a vertex cover of size zero, namely, ∅.

Now we consider the recursive case on input (𝐺 = (𝑉,𝐸), 𝑘* > 0). By the input precondition, 𝑘* is the size of
a smallest vertex cover of 𝐺 (of which there may be more than one). The algorithm considers each vertex 𝑣 ∈ 𝑉
in turn, defining 𝐺′ to be 𝐺 with 𝑣 and all its incident edges removed.

First observe that for any vertex cover of 𝐺′, adding 𝑣 to it yields a vertex cover of 𝐺, because 𝑣 covers every
edge of 𝐺 that is not in 𝐺′. So, every vertex cover of 𝐺′ has size at least 𝑘* − 1 (because every vertex cover of 𝐺
has size at least 𝑘*). Therefore, by hypothesis on 𝐷, if 𝐷(𝐺′, 𝑘* − 1) accepts, then the smallest vertex cover in
𝐺′ has size exactly 𝑘* − 1. So the precondition of the recursive call is satisfied, and by induction/recursion, the
recursive call returns a size-(𝑘* − 1) vertex cover 𝐶 ′ of 𝐺′. Then {𝑣} ∪ 𝐶 ′ is a size-𝑘* vertex cover of 𝐺, so the
final output is correct.

It just remains to show that 𝐷(𝐺′, 𝑘* − 1) accepts in some iteration. By hypothesis, 𝐺 has at least one size-𝑘*
vertex cover; let 𝑣 be any vertex in any such cover 𝐶. When the algorithm considers 𝑣, because 𝑣 does not cover
any edge of 𝐺′, it must be that 𝐶 ′ = 𝐶 ∖ {𝑣} covers all the edges in 𝐺′. So, 𝐶 ′ is a vertex cover of 𝐺′ of size
𝑘* − 1, and therefore 𝐷(𝐺′, 𝑘* − 1) accepts, as needed.

Finally we show efficiency. Each loop iteration removes a vertex and its incident edges from the graph and calls
𝐷, which can be done efficiently. The algorithm does at most |𝑉 | such iterations before 𝐷 accepts in one of them,
at which point the algorithm does one recursive call with argument 𝑘*−1 and then immediately outputs a correct
answer. Since each call to the algorithm does at most |𝑉 | loop iterations, and there are 𝑘* ≤ |𝑉 | calls in total
(plus the base-case call), the total number of iterations is 𝑂(|𝑉 |2), so the algorithm is efficient. □

Exercise 190 Using access to an oracle (or efficient algorithm) 𝐷 that decides SAT, give an efficient algorithm
that, on input a Boolean formula 𝜑, outputs a satisfying assignment for 𝜑 if one exists, otherwise outputs “no
satisfying assignment exists.”

Hint: first use the oracle to determine whether a satisfying assignment exists. Then, for each variable, set it
to either true or false and use the oracle to determine whether there is a satisfying assignment of the remaining
variables.

We have shown that the search problems of finding a maximum clique, or a minimum vertex cover, efficiently reduce
to (i.e., are “no harder than”) the respective decision problems CLIQUE or VERTEX-COVER, and vice versa. That is,
any algorithm for one form would imply a comparably efficient algorithm for the other form. In particular, even though
the decision versions of these problems might appear syntactically “easier”—they ask only to determine the existence
of a certain object in a graph, not to actually find one—they still capture the intrinsic difficulty of the search versions.

More generally, it is known (though we will not prove this) that any NP-complete decision problem has an efficient
algorithm if and only if its corresponding search problem does. More formally, there is an efficient Turing reduction
from the decision version to the search version, and vice versa.

191

CHAPTER

TWENTY

APPROXIMATION ALGORITHMS

Search problems, and especially optimization problems, allow us to consider approximation algorithms, which we
allow to output answers that are “close” to correct or optimal ones. For example, an approximate sorting algorithm
may output an array that is “almost” sorted, i.e., a small number of items may be out of order. An approximate vertex-
cover algorithm may output a vertex cover that is somewhat larger than a smallest one.

While optimal solutions are of course preferable, for many important problems of interest (like clique and vertex cover) it
is unlikely that optimal solutions can be computed efficiently—this would imply that P = NP, because the correspond-
ing decision problems are NP-hard. So, to circumvent this likely intractability, we instead seek efficient algorithms that
produce “close to optimal” solutions, which may be good enough for applications.66

An optimization problem seeks a solution (meeting some validity criteria) whose “value” is optimal for a given input,
where the definition of “value” depends on the specific problem in question. For a minimization problem, an optimal
solution is one whose value is as small as possible (for the given input), and similarly for a maximization problem. An
approximation is a solution whose value is within some specified factor of optimal, as defined next.

Definition 191 (𝛼-approximation) For an input 𝑥 of an optimization problem, let OPT(𝑥) denote the value of
an optimal solution for 𝑥. For a non-negative real number 𝛼, called the approximation ratio or approximation
factor, an 𝛼-approximation for input x is a solution whose value 𝑉 satisfies:

• For a minimization problem, with 1 ≤ 𝛼,

OPT(𝑥) ≤ 𝑉 ≤ 𝛼 · OPT(𝑥) .

(Note that OPT(𝑥) ≤ 𝑉 holds trivially, by definition of OPT.)

• For a maximization problem, with 𝛼 ≤ 1,

𝛼 · OPT(𝑥) ≤ 𝑉 ≤ OPT(𝑥) .

(Note that 𝑉 ≤ OPT(𝑥) holds trivially, by definition of OPT.)

Notice that the closer 𝛼 is to one, the better the guarantee on the “quality” of the approximation, i.e., the tighter the
above inequalities are.

In more detail, any optimal solution is equivalent to a 1-approximation, and for a minimization problem, it is also (say)
a 2-approximation; likewise, any 2-approximation is also (say) a 10-approximation, etc. In general, for a minimization
problem and any 1 ≤ 𝛼 ≤ 𝛼′, any 𝛼-approximation is also a 𝛼′-approximation, and symmetrically for maximization
problems. This is simply because the tighter bound required of an 𝛼-approximation trivially implies the looser bound
required of an 𝛼′-approximation; the value is not required to be equal to any particular multiple of the optimum.

66 Even for efficiently solvable problems like longest common subsequence, the polynomial runtimes might be too large for huge instances that
arise in practice, like DNA sequences. In such cases we might seek even faster approximation algorithms for these problems.

192

Foundations of Computer Science, Release 0.5

Definition 192 (𝛼-approximation Algorithm) An 𝛼-approximation algorithm for an optimization problem is
an algorithm 𝐴 whose output 𝐴(𝑥) is an 𝛼-approximation for 𝑥, for all inputs 𝑥.

In other words, for any input 𝑥:

• 𝐴(𝑥) outputs a valid solution for 𝑥, and

• letting ALG(𝑥) denote the value of the algorithm’s output 𝐴(𝑥), we have that ALG(𝑥) ≤ 𝛼 ·OPT(𝑥) for a
minimization problem, and 𝛼 · OPT(𝑥) ≤ ALG(𝑥) for a maximization problem.

Similar comments as above apply to approximation algorithms; e.g., a 2-approximation algorithm is also a 10-
approximation algorithm. An 𝛼-approximation algorithm is not ever required to output a solution whose value is
equal to any particular multiple of the optimum.

20.1 Minimum Vertex Cover

Let us return to the problem of finding a minimum vertex cover. Unless P = NP, there is no efficient algorithm for this
problem. So, we instead relax our goal: is there an efficient algorithm to approximate a minimum vertex cover, with a
good approximation ratio 𝛼 ≥ 1? Our first attempt is what we call the “single-cover” algorithm. It works by repeatedly
taking an edge, covering it by placing one of its endpoints in the cover, and removing that endpoint and all its incident
edges (which are now covered) from the graph. The precise pseudocode is as follows.

Input: an undirected graph
Output: a vertex cover of the graph

function SingleCover(𝐺 = (𝑉,𝐸))
𝐶 = ∅
while 𝐺 has at least one edge do

choose an arbitrary edge 𝑒 ∈ 𝐸, and let 𝑣 be an arbitrary endpoint of 𝑒
𝐶 = 𝐶 ∪ {𝑣}
remove 𝑣 and all its incident edges from 𝐺

return 𝐶

It is clear that this algorithm outputs a vertex cover of 𝐺, because it removes only those edges covered by 𝐶 from the
graph, and does not halt until every edge has been removed (i.e., covered). It is also clear that the algorithm is efficient,
because it does at most |𝐸| iterations, and each iteration can be performed efficiently.

How good of an approximation does this algorithm obtain? Unfortunately, its approximation factor can be as large as
|𝑉 | − 1, which is trivial: in any simple graph, any |𝑉 | − 1 vertices form a vertex cover. (Indeed, for an edge to be
uncovered, both of its endpoints must not be selected.) To see how the algorithm can obtain such a poor approximation,
consider the following star-shaped graph:

1

23

4

In this graph, a minimum vertex cover consists of just the vertex in the center, so it has size one. However, because
the algorithm chooses to remove an arbitrary endpoint of each selected edge, it might choose all the vertices along
the “outside” of the star. This would result in it outputting a vertex cover of size four, for an approximation ratio of
four. Moreover, larger star-shaped graphs (with more vertices around the center vertex) can result in arbitrarily large

20.1. Minimum Vertex Cover 193

Foundations of Computer Science, Release 0.5

approximation ratios, of just one less than the number of vertices. In particular, there is no constant 𝛼 such that the
single-cover algorithm obtains an approximation ratio of 𝛼 on all input graphs.

Now let us consider another, slightly more sophisticated algorithm. Observe that in the star-shaped graph, the center
vertex has the largest degree (number of incident edges). If we choose that vertex first, then we cover all the edges,
thereby obtaining the optimal cover size (of just a single vertex) for this type of graph. This observation motivates a
greedy strategy that repeatedly selects and removes a vertex having the (currently) largest degree:

Input: an undirected graph
Output: a vertex cover of the graph

function GreedyCover(𝐺 = (𝑉,𝐸))
𝐶 = ∅
while 𝐺 has at least one edge do

choose a vertex 𝑣 ∈ 𝑉 of largest (current) degree
𝐶 = 𝐶 ∪ {𝑣}
remove 𝑣 and all its incident edges from 𝐺

return 𝐶

This algorithm outputs a vertex cover of 𝐺 and is efficient, for the same reasons that apply to SingleCover. While
the algorithm works very well for star-shaped graphs, there are other graphs for which its approximation ratio can be
arbitrarily large, i.e., not bounded by any constant. As an illustration, consider the following bipartite graph:

1 2 3 4 5 6 7 8

An optimal cover consists of the six vertices in the top layer. However, the algorithm instead chooses the eight vertices
in the bottom layer, and thus obtains an approximation ratio of 8/6 = 4/3. The vertex at the bottom left has degree
six, versus the maximum degree of five among the rest of the vertices, so the bottom-left vertex is selected first, and
removed from the graph. Then, the second vertex in the bottom layer has degree five, whereas all the other vertices
have degree at most four, so it is selected and removed. Then, the unique vertex with largest degree is the third one
in the bottom layer, so it is selected and removed, and so on, until all the bottom-layer vertices are selected and the
algorithm terminates.

While the algorithm obtains an approximation ratio of 4/3 on this graph, larger graphs with a similar structure can be
constructed with 𝑘 vertices in the top layer, constituting a minimum vertex cover, and ≈ 𝑘 log 𝑘 vertices in the bottom
layer, which the algorithm selects instead. So, on these graphs the algorithm obtains an approximation ratio of ≈ log 𝑘,
which can be made arbitrarily large by increasing 𝑘.

To get a better approximation ratio, we revisit the single-cover algorithm, but make a seemingly counter-intuitive modi-
fication: whenever we choose an uncovered edge, instead of selecting one of its endpoints (arbitrarily), we select both of
its endpoints, and remove them and their incident edges from the graph. For this reason, we call this the “double-cover”
algorithm. The pseudocode is as follows.

Input: an undirected graph
Output: a 2-approximate vertex cover of the graph

20.1. Minimum Vertex Cover 194

Foundations of Computer Science, Release 0.5

function DoubleCover(𝐺 = (𝑉,𝐸))
𝐶 = ∅
while 𝐺 has at least one edge do

choose an arbitrary edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸
𝐶 = 𝐶 ∪ {𝑢, 𝑣}
remove both 𝑢, 𝑣 and all their incident edges from 𝐺

return 𝐶

It is apparent that this algorithm outputs a vertex cover of 𝐺 and is efficient, for the same reasons that SingleCover is
efficient.

At first glance, double-cover might seem like “overkill,” because to cover an edge it suffices to select only one of its
endpoints. However, as we will see next, double-cover has the benefit of allowing us to compare both the algorithm’s
output, and an optimal solution, to a common “benchmark” quantity. More specifically, we will upper-bound the size
of the algorithm’s output in terms of the benchmark, and lower-bound the size of an optimal vertex cover in terms of
the same benchmark. Combining these bounds then yields an upper bound on the algorithm’s output in terms of an
optimal solution, which establishes the approximation ratio.

The benchmark we use to analyze double-cover is given by sets of pairwise disjoint edges. In a given graph𝐺 = (𝑉,𝐸),
a subset of edges 𝑆 ⊆ 𝐸 is pairwise disjoint if no two edges in 𝑆 share a common vertex.

Claim 193 In any graph 𝐺 = (𝑉,𝐸), if 𝑆 ⊆ 𝐸 is pairwise disjoint, then any vertex cover of 𝐺 has at least |𝑆|
vertices. In particular, OPT ≥ |𝑆|, where OPT is the size of a minimum vertex cover of 𝐺.

Proof 194 Let 𝐶 be an arbitrary vertex cover of 𝐺. Since no two edges in 𝑆 share a common endpoint, each
vertex in 𝐶 covers at most one edge in 𝑆. And since 𝐶 covers every edge in 𝐸, in particular it covers every edge
in 𝑆 ⊆ 𝐸. So, 𝐶 has at least |𝑆| vertices. □

Claim 195 For any input graph 𝐺 = (𝑉,𝐸), the set 𝑆 of edges chosen by DoubleCover is pairwise disjoint.

Proof 196 We claim that DoubleCover obeys the following loop invariant: whenever it reaches the top of its
while loop, the edges it has been selected so far are pairwise disjoint, and moreover, no edge in (the current state of)
𝐺 has a common endpoint with any of the selected edges. In particular, it follows that at the end of the algorithm,
the selected edges are pairwise disjoint, as claimed.

We prove the claim by induction. Initially, the claim holds trivially, because no edge has been selected yet. Now
assume as the inductive hypothesis that the claim holds at the start of some loop iteration; we show that it also
holds at the end of the iteration. By the inductive hypothesis, the newly selected edge 𝑒 = (𝑢, 𝑣) from 𝐺 is disjoint
from the previously selected ones (which are themselves pairwise disjoint), and hence all these selected edges are
pairwise disjoint. Moreover, the iteration removes the endpoints 𝑢, 𝑣 and all their incident edges from the graph,
so by this and the inductive hypothesis, no edge of the updated 𝐺 has a common endpoint with any selected edge.
The claimed loop invariant therefore follows by induction. □

Finally, we combine the previous two claims to obtain an approximation ratio for DoubleCover.

Theorem 197 DoubleCover is a 2-approximation algorithm for the minimum vertex cover problem.

Proof 198 On input graph 𝐺, let OPT be the size of a minimum vertex cover, let 𝑆 be the set of all the edges
selected by a run of DoubleCover, and let ALG be the size of the output cover.

Because the output cover consists of the endpoints of each edge in 𝑆 (and no others), ALG ≤ 2|𝑆|. In fact,
this upper bound is actually an equality, because 𝑆 is pairwise disjoint by Claim 195, but all we will need is the
inequality. Next, because 𝑆 is pairwise disjoint, by Claim 193 we have that |𝑆| ≤ OPT. Combining these two

20.1. Minimum Vertex Cover 195

Foundations of Computer Science, Release 0.5

bounds, we get that

ALG ≤ 2 · |𝑆| ≤ 2 · OPT ,

hence the theorem follows by Definition 192. □

It is worthwhile to reflect on the general structure of the argument, which is common to many analyses of approxi-
mation algorithms. We first identified a “benchmark” quantity, namely, the number of edges selected by a run of the
DoubleCover algorithm. We then proved both an upper bound on the algorithm’s output size ALG, and a lower bound
on the optimal value OPT, in terms of this benchmark. Combining these, we obtained an upper bound on ALG in terms
of OPT, as desired.

20.2 Maximum Cut

As another example, we consider the problem of finding a maximum cut in an undirected graph. We first define the
relevant terminology.

• A cut in an undirected graph 𝐺 = (𝑉,𝐸) is just a subset 𝑆 ⊆ 𝑉 of the vertices; this partitions 𝑉 into two disjoint
sets, 𝑆 and its complement 𝑆 = 𝑉 ∖ 𝑆, called the sides of the cut.

• An edge of the graph crosses the cut if its endpoints are in opposite sides of the cut, i.e., one of its endpoints is
in 𝑆 and the other is in 𝑆. Observe that a “self-loop” edge (i.e., one whose endpoints are the same vertex) does
not cross any cut, so without loss of generality we assume that the graph has no such edge. The set of crossing
edges is denoted

𝐶(𝑆) = {(𝑢, 𝑣) ∈ 𝐸 : 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆} .

(Recall that edges (𝑢, 𝑣) are undirected, so for a crossing edge we can require that 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆 without loss
of generality.)

• Finally, the size of the cut is |𝐶(𝑆)|, the number of crossing edges. (Note that in this context, the size of a cut 𝑆
is not the number of vertices in 𝑆!)

Observe that by symmetry, any cut 𝑆 is equivalent to its complement cut 𝑆: it has the same crossing edges, and hence
the same size. So, we can consider 𝑆 and 𝑆 to be freely interchangeable.

The following is an example of a cut 𝑆, with its crossing edges 𝐶(𝑆) represented as dashed line segments:

A maximum cut of a graph, or max-cut for short, is a cut of maximum size in the graph, i.e., one having the largest
possible number of crossing edges. A max-cut represents a partition of the graph that is the most “robust,” in the sense
that disconnecting the two sides from each other requires removing the maximum number of edges. Max-cuts have
important applications to circuit design, combinatorial optimization, and statistical physics (e.g., magnetism).

20.2. Maximum Cut 196

Foundations of Computer Science, Release 0.5

The decision version of the maximum-cut problem is defined as:

MAX-CUT = {(𝐺, 𝑘) : 𝐺 has a cut of size at least 𝑘} .

This is an NP-complete problem (we omit a proof), so there is no efficient algorithm for the optimization problem
unless P = NP.67 So, we instead focus on designing an efficient approximation algorithm.

To motivate the algorithm’s approach, we start with a key observation. Fix a cut and an arbitrary vertex 𝑣 of a graph,
and consider the edges incident to that vertex. If a strict majority of those edges do not cross the cut—i.e., a majority
of 𝑣’s neighbors are on 𝑣’s side of the cut—then we can get a larger cut by moving 𝑣 to the other side of the cut. This
is because doing so turns each of 𝑣’s non-crossing edges into a crossing edge, and vice versa, and it does not affect
any other edge. (Here we have used the assumption that the graph has no self-loop edge.) We now formalize this
observation more precisely.

For a cut 𝑆 of a graph 𝐺 = (𝑉,𝐸) and a vertex 𝑣 ∈ 𝑉 , let 𝑆(𝑣) denote the side of the cut to which 𝑣 belongs, i.e.,
𝑆(𝑣) = 𝑆 if 𝑣 ∈ 𝑆, and 𝑆(𝑣) = 𝑆 otherwise. Let 𝐸𝑣 ⊆ 𝐸 denote the set of edges incident to 𝑣, and partition it into
the subsets of crossing edges 𝐶𝑣(𝑆) = 𝐸𝑣 ∩ 𝐶(𝑆) and non-crossing edges 𝑁𝑣(𝑆) = 𝐸𝑣 ∖ 𝐶𝑣(𝑆) = 𝐸𝑣 ∩ 𝐶(𝑆).

Lemma 199 Let 𝑆 be a cut in a graph 𝐺 = (𝑉,𝐸), 𝑣 ∈ 𝑉 be a vertex, and 𝑆′ = 𝑆(𝑣) ∖ {𝑣} be the cut (or its
equivalent complement) obtained by moving 𝑣 to the other side. Then

|𝐶(𝑆′)| = |𝐶(𝑆)|+ |𝑁𝑣(𝑆)| − |𝐶𝑣(𝑆)| .

In particular, the size of 𝑆′ is larger than the size of 𝑆 if and only if a strict majority of 𝑣’s incident edges do not
cross 𝑆.

Proof 200 By definition, the edges crossing 𝑆′ = 𝑆(𝑣) ∖ {𝑣} are the same as those crossing 𝑆, except for the
edges incident to 𝑣. For every edge 𝑒 ∈ 𝐸𝑣 , we have that 𝑒 ∈ 𝐶(𝑆) ⇐⇒ 𝑒 /∈ 𝐶(𝑆′), because 𝑣 was moved to the
other side of the cut. Therefore, 𝐶(𝑆′) = 𝐶(𝑆)∪𝑁𝑣(𝑆)∖𝐶𝑣(𝑆). Since 𝐶(𝑆)∩𝑁𝑣(𝑆) = ∅ and 𝐶𝑣(𝑠) ⊆ 𝐶(𝑆),
the claim follows. □

Lemma 199 suggests the following “local search” algorithm for approximating max-cut: starting from an arbitrary cut,
repeatedly find a vertex for which a strict majority of its incident edges do not cross the cut, and move it to the other
side of the cut. Once no such vertex exists, output the current cut. The pseudocode is as follows.

Input: an undirected graph
Output: a 1/2-approximate maximum cut in the graph

function LocalSearchCut(𝐺 = (𝑉,𝐸))
𝑆 = 𝑉
while there is a vertex 𝑣 for which 𝑁𝑣(𝑆) > 𝐶𝑣(𝑆) do

𝑆 = 𝑆(𝑣) ∖ {𝑣}
return 𝑆

The following illustrates a possible execution of the local-search algorithm on an example graph:
67 By contrast, the minimum cut problem is efficiently solvable by network-flow algorithms.

20.2. Maximum Cut 197

Foundations of Computer Science, Release 0.5

Cut size: 0 Cut size: 3 Cut size: 5

Initially, all the vertices are in 𝑆, illustrated above as solid red circles. Since there is no crossing edge, the algorithm can
arbitrarily choose any vertex to move to the other side of the cut, depicted as open circles; suppose that it chooses the
bottom-right vertex. Next, every vertex still in 𝑆 has a strict majority of its edges as non-crossing, so the algorithm can
arbitrarily choose any one of them to move to the other side of the cut; suppose that it chooses the middle-left vertex.
At this point, no single vertex can be switched to increase the size of the cut, so the algorithm outputs the current cut,
which has size five. For comparison, the maximum cut for this graph has size six; try to find it.

We now analyze the LocalSearchCut algorithm, first addressing efficiency. It is clear that each iteration of the
algorithm can be done efficiently, by inspecting each vertex and its incident edges. However, it is not immediately
obvious how many iterations are performed, or if the algorithm is even guaranteed to halt at all. In particular, it
is possible that some vertex switches back and forth, from one side of the cut to the other, several times during an
execution of the algorithm. So, one might worry that the algorithm could potentially switch a sequence of vertices
back and forth forever. Fortunately, this cannot happen, which we can prove using the potential method (page 7).

Claim 201 On any input graph 𝐺 = (𝑉,𝐸), LocalSearchCut runs for at most |𝐸| iterations.

Proof 202 At all times during the algorithm, the number of crossing edges |𝐶(𝑆)| is between 0 and |𝐸|, inclusive.
By the choice of each selected vertex and Claim 199, each iteration of the algorithm increases |𝐶(𝑆)| by at least
1. So, the algorithm must halt within |𝐸| iterations. □

We now analyze the algorithm’s quality of approximation on an arbitrary input graph 𝐺 = (𝑉,𝐸). Since max-cut is
a maximization problem, we seek to prove a lower bound on the size ALG = |𝐶(𝑆)| of the algorithm’s output cut 𝐶,
and an upper bound on the size OPT of a maximum cut in the graph, in terms of some common benchmark quantity.

It turns out that a good choice of benchmark is |𝐸|, the total number of edges in the graph. Trivially, OPT ≤ |𝐸|. A
lower bound on ALG is given by the following.

Theorem 203 For any undirected input graph𝐺 = (𝑉,𝐸), LocalSearchCut(𝐺) outputs a cut𝑆 of size |𝐶(𝑆)| ≥
|𝐸|/2, and hence LocalSearchCut is a 1/2-approximation algorithm for the max-cut problem.

Proof 204 By definition of LocalSearchCut(𝐺), it outputs a cut 𝑆 for which at least half of every vertex’s
incident edges cross 𝑆, i.e., |𝐶𝑣(𝑆)| ≥ 1

2 |𝐸𝑣| for every 𝑣 ∈ 𝑉 . We claim that this implies that at least half of all
the edges in the graph cross 𝑆. Indeed,

|𝐶(𝑆)| =
∑︀

𝑣∈𝑉 |𝐶𝑣(𝑆)|
2

≥
∑︀

𝑣∈𝑉 |𝐸𝑣|
4

=
|𝐸|
2

,

20.2. Maximum Cut 198

Foundations of Computer Science, Release 0.5

where the first equality holds because summing |𝐶𝑣(𝑆)| over all 𝑣 ∈ 𝑉 “double counts” every crossing edge
(via both of its endpoints), the inequality uses the lower bound on |𝐶𝑣(𝑆)|, and the final equality holds because
summing the degrees |𝐸𝑣| over all 𝑣 ∈ 𝑉 double counts every edge in the graph (again via both endpoints).

Next, observe that any maximum cut 𝑆* of 𝐺 (and indeed, any cut at all) has size OPT := |𝐶(𝑆*)| ≤ |𝐸|.
Combining these two inequalities, we see that 1

2OPT ≤ |𝐸|/2 ≤ |𝐶(𝑆)|, and the theorem follows by Definition
192. □

20.3 Knapsack

The knapsack problem involves selecting a subset of items that maximizes their total value, subject to a weight con-
straint. More specifically: we are given 𝑛 items, where item 𝑖 has some non-negative value 𝑣𝑖 ≥ 0 and weight 𝑤𝑖 ≥ 0.
We also have a “knapsack” that has a given weight capacity 𝐶. We wish to select a subset 𝑆 of the items that maximizes
the total value

value(𝑆) =
∑︁
𝑖∈𝑆

𝑣𝑖

subject to the weight limit: ∑︁
𝑖∈𝑆

𝑤𝑖 ≤ 𝐶 .

In this problem formulation, we cannot select any single item more than once; each item either is in 𝑆, or not. So, this
formulation is also known as the 0-1 knapsack problem.

Without loss of generality, we assume that 0 < 𝑤𝑖 ≤ 𝐶, i.e., each item’s weight is positive and no larger than the
knapsack capacity 𝐶. This is because a zero-weight item can be selected at no cost and without decreasing the obtained
value, and an item that weighs more than the capacity cannot be selected at all.

A natural dynamic-programming algorithm computes an optimal set of items inΘ(𝑛𝐶) operations, which at first glance
may appear to be efficient. However, because the input capacity 𝐶 is represented in binary (or some other non-unary
base), the 𝐶 factor in the running time is actually exponential in its size (in digits). Thus, the dynamic-programming
algorithm actually is not efficient; its running time is not polynomial in the input size.68 More concretely, the knapsack
capacity 𝐶, and 𝑛 items’ weights and values, could each be about 𝑛 bits long, making the input size Θ(𝑛2) and the
running time Ω(𝑛2𝑛).

In fact, the decision version of the knapsack problem is known to be NP-complete (via a reduction from
SUBSET-SUM), so there is no efficient algorithm for this problem unless P = NP. Therefore, we instead attempt
to approximate an optimal solution efficiently.

A natural approach is to use a greedy algorithm. Our first attempt is what we call the relatively greedy algorithm, in
which we select items by their relative value 𝑣𝑖/𝑤𝑖 per unit of weight, in non-increasing order, until we cannot take
any more.

Input: arrays 𝑉,𝑊 of item values and weights, sorted non-increasing by relative value 𝑉 [𝑖]/𝑊 [𝑖], and a knapsack
capacity 𝐶

Output: a valid selection of items
function RelativelyGreedy(𝑉 [1, . . . , 𝑛],𝑊 [1, . . . , 𝑛], 𝐶)

𝑆 = ∅, weight = 0
for 𝑖 = 1 to 𝑛 do

if weight +𝑊 [𝑖] ≤ 𝐶 then
68 An algorithm is said to run in pseudopolynomial time if its running time is polynomial in the value of the integers in the input, as opposed to

the size (in digits) of the integers. Equivalently, the algorithm runs in time polynomial in the input size if all numbers in the input are encoded in
unary. The dynamic-programming algorithm for knapsack runs in pseudopolynomial time.

20.3. Knapsack 199

Foundations of Computer Science, Release 0.5

𝑆 = 𝑆 ∪ {𝑖}
weight = weight +𝑊 [𝑖]

return 𝑆

The overall running time is dominated by ensuring that the input is appropriately sorted, which takes 𝑂(𝑛 log 𝑛) com-
parisons (e.g., using merge sort (page 13)) of the relative values, which can be done efficiently (as always, in terms of
the input size, in bits). Thus, this algorithm is efficient.

Unfortunately, the approximation ratio obtained by the RelativelyGreedy algorithm can be arbitrarily bad. Consider
just two items, the first having value 𝑣1 = 1 and weight 𝑤1 = 1, and the second having value 𝑣2 = 100 and weight
𝑤2 = 200. These items have relative values 1 and 1/2, respectively, so the algorithm will consider them in this order.
If the weight capacity is 𝐶 = 200, then the algorithm selects the first item, but then cannot select the second item
because it would exceed the capacity. (Remember that the algorithm is greedy, and hence does not “reconsider” any
of its choices.) So, the algorithm outputs 𝑆 = {1}, which has a total value of value(𝑆) = 1. However, the (unique)
optimal solution is 𝑆* = {2}, which has a total value of value(𝑆*) = 100. So for this input, the approximation ratio
is just 1/100. Moreover, we can easily generalize this example so that the approximation ratio is as small of a positive
number as we would like.

The main problem in the above example is that the relatively-greedy algorithm de-prioritizes the item with the largest
absolute value, in favor of the one with a larger relative value. At the other extreme, we can consider the “single-greedy”
algorithm, which selects just one item having the largest (absolute) value. (The algorithm takes just one item, even if
there is capacity for more.) The pseudocode is as follows.

function SingleGreedy(𝑉,𝑊,𝐶)
let 𝑖 be the index of an item having largest value 𝑉 [𝑖] return 𝑆 = {𝑖}

The running time is dominated by the 𝑂(𝑛) comparisons of the entries in the value array, which can be done efficiently.

By inspection, SingleGreedy outputs the optimal solution for the above example input. Unfortunately, there are other
examples for which this algorithm has an arbitrarily bad approximation ratio. Consider 201 items, where all items but
the last have value 1 and weight 1, while the last item has value 2 and weight 200. Formally,

𝑣1 = 𝑣2 = . . . = 𝑣200 = 1

𝑤1 = 𝑤2 = . . . = 𝑤200 = 1

𝑣201 = 2

𝑤201 = 200 .

With a capacity 𝐶 = 200, the optimal solution consists of items 1 through 200, for a total value of 200. However,
SingleGreedy selects just item 201, for a value of 2. (Note that there is no capacity left, so dropping the restriction to
a single item would not help here.) Thus, it obtains an approximation ratio of just 1/100 on this input. Moreover, this
example can be generalized to make the ratio arbitrarily small.

Observe that for this second example input, the relatively-greedy algorithm would actually output the optimal solution.
From these two examples, we might guess that the single-greedy algorithm does well on inputs where the relatively
greedy algorithm does poorly, and vice versa. This motivates us to consider the combined-greedy algorithm, which
runs both the relatively greedy and single-greedy algorithms on the same input, and chooses whichever output obtains
larger value (breaking a tie arbitrarily).

function CombinedGreedy(𝑉,𝑊,𝐶)
𝑆1 = RelativelyGreedy(𝑉,𝑊,𝐶)
𝑆2 = SingleGreedy(𝑉,𝑊,𝐶)
if value(𝑆1) > value(𝑆2) then

return 𝑆1

else
return 𝑆2

20.3. Knapsack 200

Foundations of Computer Science, Release 0.5

Perhaps surprisingly, even though each algorithm can output an arbitrarily bad approximation for certain inputs, it can
be shown that CombinedGreedy is a 1/2-approximation algorithm for the knapsack problem! That is, on any input it
outputs a solution whose value is at least half the optimal value for that input.

Exercise 205 In this exercise, we will prove that the CombinedGreedy algorithm is a 1/2-approximation algo-
rithm for the 0-1 knapsack problem.

a) Define the fractional knapsack problem as a variant that allows selecting any partial amount of each item,
between 0 and 1, inclusive. For example, we can take 3/7 of item 𝑖, for a value of (3/7)𝑣𝑖, at a weight
of (3/7)𝑤𝑖. Show that for this fractional variant, the optimal value is no smaller than for the original 0-1
variant (for the same weights, values, and knapsack capacity).

b) Prove that the sum of the values obtained by the relatively greedy and single-greedy algorithms (for 0-1
knapsack) is at least the optimal value for the fractional knapsack problem (on the same input).

c) Using the previous parts, prove that CombinedGreedy is a 1/2-approximation algorithm for the 0-1 knap-
sack problem.

20.4 Other Approaches to NP-Hard Problems

Efficient approximation algorithms are some of the most useful ways of dealing with NP-hard optimization problems.
This is because they come with provable guarantees: on any input, they run in polynomial time, and we have the
assurance that their output is “close” to optimal.

There are other fruitful approaches for dealing with NP-hardness as well, which can be used on their own or combined
together. These include:

1. Heuristics. These are algorithms that might not output a correct or (near-)optimal solution on all inputs, or might
run for more than polynomial time on some inputs; however, they tend to do well in practice, for the kinds of inputs
that arise in the real-world application. For example, many SAT solvers used in practice run in exponential time
in the worst case, and/or might reject some satisfiable formulas, but they run fast enough and give good answers
on the kind of formulas that arise in practice (e.g., in software verification).

2. Restricting to special cases. The motivating application of an algorithmic problem may have additional “struc-
ture” that is not present in its NP-hard formulation. For example, there are efficient algorithms for finding
maximum cuts in planar graphs, which are graphs that can be drawn on the plane without any crossing edges.
This may hold in some scenarios, like networks of road segments, but not in others, like fiber-optic networks.

As another example, even though the general traveling salesperson problem TSP cannot be approximated to
within a constant factor unless P = NP, there is an efficient 2-approximation algorithm for “metric” TSP, which
is the special case where the edge distances satisfy the triangle inequality. This may hold in some applications,
like road networks, but not in others, like airfare prices.

3. Restricting to small inputs. In practice, the inputs we encounter might be small enough that we can afford to
use certain “inefficient” algorithms, even though they scale poorly as the input size grows. For example, in the
knapsack program, if the capacity is not too large, the non-polynomial-time dynamic-programming algorithm
might be fast enough for our needs.

20.4. Other Approaches to NP-Hard Problems 201

Part IV

Randomness

202

CHAPTER

TWENTYONE

RANDOMIZED ALGORITHMS

Thus far, every algorithm we have seen is deterministic. This means that, when run on a given input, the steps the
algorithm performs and the output it produces are entirely determined. So, when run multiple times on the same input,
the algorithm produces the same output. At heart, this is because any Turing machine’s transition rules are deterministic,
i.e., it has a transition function.

In this unit, we consider how randomness can be applied in computation. We will exploit randomness to design simple,
probabilistic algorithms, and we will discuss several tools that can be used to analyze randomized algorithms.

Since Turing machines are deterministic, they cannot make random choices—so how are randomized algorithms pos-
sible? In real life, when we want to make a random choice, we can flip a coin, roll a die, or the like. Similarly, to model
randomized algorithms and Turing machines, we augment them with an external source of randomness.

For this purpose, the simplest source of randomness is a (virtual) “fair coin” that the algorithm can “flip” as needed.
Formally, we can define a randomized Turing machine as having a special “coin flip” state that, whenever it is entered,
writes a fresh unbiased random bit at the location of the tape head, and transitions back to the previous state. With
this basic feature it is possible to simulate richer sources of randomness, like the roll of a die with any finite number of
sides.

In this text, we write algorithms and pseudocode that make truly random, unbiased, and independent choices from
whatever finite set is convenient. In the real world, when implementing and using randomized algorithms—especially
for cryptography—it is vital to use a high-quality source of randomness. (Ensure this can be a very delicate matter, but
it is outside the scope of this course.)

As a first example of the utility of randomized algorithms, consider the game of rock-paper-scissors between two
players. In this game, both players simultaneously choose one of three options: rock, paper, or scissors. The game is a
tie if both players choose the same option. If they make different choices, then rock beats (“smashes”) scissors, scissors
beats (“cuts”) paper, and paper beats (“covers”) rock:

Player A

Rock Paper Scissors

Pl
ay

er
 B Rock Tie A wins B wins

Paper B wins Tie A wins

Scissors A wins B wins Tie

Suppose we write an algorithm (or strategy) to play the game, e.g., in a best-out-of-five sequence of rounds. Similar
to worst-case analysis of algorithms, we should consider our strategy’s performance against an opponent strategy that
plays optimally against it. In other words, we should assume that our opponent “knows” our strategy, and plays the best
it can with that knowledge.

203

Foundations of Computer Science, Release 0.5

If we “hard-code” a strategy—like playing rock in the first two rounds, then paper, then scissors, then paper—then
how will this strategy perform? The strategy is fixed and deterministic, so an optimal opponent can win every round
(namely, play paper in the first two rounds, then scissors, then rock, then scissors). More generally, for any deterministic
strategy—even one that is “adaptive” based on the opponent’s moves—there exists an opponent strategy that entirely
beats it. This illustrates the problem with deterministic strategies: the make the program’s actions predictable, and thus
easily countered.

Now consider a strategy that chooses a random action in each move, with equal probability for rock, paper, and scissors.
Here, even an opponent that knows this strategy does not know in advance which action the strategy will choose, and
therefore cannot universally counter that move. In fact, we prove below that no matter what strategy the opponent
uses, the probability that the opponent wins an individual round is just 1/3 (and the same goes for tying and losing the
round). To see why this is the case, we first review some basic tools of probability.

21.1 Review of Probability

We first recall the basic definitions and axioms of probability. For simplicity, we focus on discrete probability, which
will be sufficient for our purposes.

21.1.1 Probability Spaces and Events

Definition 206 (Probability Space) A (discrete) probability space is a countable set Ω, called the sample space
of possible outcomes, along with a probability function Pr: Ω → [0, 1] that assigns a probability to each outcome,
and satisfies ∑︁

𝜔∈Ω

Pr[𝜔] = 1 .

Let’s elaborate on this definition and consider some examples. The sample space Ω is the set of every possible out-
come—i.e., “every thing that could potentially happen”—in a randomized process, which is also known as an experi-
ment. Each outcome has a probability between 0 and 1 (inclusive) of occurring, as defined by the probability function
Pr, and all these probabilities must sum to 1.

Example 207 (Three Fair Coins: Probability Space) Consider the experiment of tossing three “fair” (unbi-
ased) coins in sequence. We formalize this as a probability space—i.e., a sample space and a probability function
on it.

The sample space Ω is the set of all 8 = 23 possible sequences of three heads or tails that can occur, i.e.,

Ω = {𝐻𝐻𝐻,𝐻𝐻𝑇,𝐻𝑇𝐻,𝐻𝑇𝑇, 𝑇𝐻𝐻, 𝑇𝐻𝑇, 𝑇𝑇𝐻, 𝑇𝑇𝑇} ,

where 𝐻 represents heads and 𝑇 represents tails.

Next, we define an appropriate probability function. To represent the fairness of the coins, we require that each
of the eight outcomes has the same probability. Since by definition the probabilities of all eight outcomes must
sum to 1, we should define Pr[𝜔] = 1/8 for every outcome 𝜔 ∈ Ω, e.g., Pr[𝐻𝐻𝐻] = Pr[𝐻𝐻𝑇] = · · · =
Pr[𝑇𝑇𝑇] = 1/8.69

These definitions generalize straightforwardly to the probability experiment of tossing 𝑛 ≥ 0 fair coins, where
the sample space is Ω = {𝐻,𝑇}𝑛, and each outcome 𝜔 ∈ Ω has the same probability Pr[𝜔] = 1/2𝑛.

69 If we wanted to, we could also define some impossible outcomes by including them in our sample space and assigning them probabilities
of zero, like 𝐹𝐹𝐹 for the outcome that all three coins turn into fish. This would still be a valid probability space because it satisfies all the
requirements from the definition, but the impossible outcomes would just be needless clutter. In other situations, however, it might be useful
or simpler to define some zero-probability outcomes.

21.1. Review of Probability 204

Foundations of Computer Science, Release 0.5

Definition 208 (Event) For a probability space (Ω,Pr), an event is any subset 𝐸 ⊆ Ω of the sample space. The
probability function is extended to events as

Pr[𝐸] =
∑︁
𝜔∈𝐸

Pr[𝜔] .

In other words, an event is any subset of outcomes, and its probability is the sum of the probabilities of those outcomes.
We now build on the previous example.

Example 209 (Three Fair Coins: Events) Continuing from the probability space for tossing three fair coins as
defined in Example 207, we now consider some example events.

• The event “the first toss comes up heads” is formalized as 𝐸1 = {𝐻𝐻𝐻,𝐻𝐻𝑇,𝐻𝑇𝐻,𝐻𝑇𝑇} ⊆ Ω, i.e.,
the subset of all outcomes in which the first character is 𝐻 . By definition, the probability of this event is
the sum of the probabilities of all the outcomes in the event. Since this event has four outcomes, and each
has probability 1/8, we get that Pr[𝐸1] = 4/8 = 1/2. This matches our intuition that the probability of
getting heads on the first toss (ignoring what happens on the remaining two tosses) is 1/2.

• The event “the first and third tosses come up the same” is formalized as the subset 𝐸2 =
{𝐻𝐻𝐻,𝐻𝑇𝐻, 𝑇𝐻𝑇, 𝑇𝑇𝑇} ⊆ Ω. Similarly, the probability of this event is Pr[𝐸2] = 4/8 = 1/2.
This also matches our intuition: no matter how the first toss comes up, the third toss has a 1/2 probability
of matching it.

• The event “the same number of heads and tails come up” is formalized as the empty subset 𝐸3 = ∅ ⊆ Ω.
This is because no outcome has the same number of heads and tails.70 By definition, the probability of this
event is Pr[𝐸3] = 0.

70 If the impossible outcome FFF (as mentioned in the previous footnote) was a member of the sample space, then because it has the same
number of heads and tails, it would be an element of event 𝐸3. However, we would still have Pr[𝐸3] = 0, because Pr[𝐹𝐹𝐹] = 0.

Because events are just subsets of the sample space, we can use set relations to relate their probabilities. For example,
for any events 𝐸1 ⊆ 𝐸2, we have that Pr[𝐸1] ≤ Pr[𝐸2], because Pr[𝜔] ≥ 0 for every outcome 𝜔. (However, we
caution that 𝐸1 ⊊ 𝐸2 does not imply that Pr[𝐸1] < Pr[𝐸2], because the events in 𝐸2 ∖ 𝐸1 might have probability
zero.)

We can also use set operations on events to yield other events. For example, every event 𝐸 has a complement event
𝐸 = Ω ∖ 𝐸, whose probability is Pr[𝐸] = 1− Pr[𝐸], because

Pr[𝐸] + Pr[𝐸] =
∑︁
𝜔∈𝐸

Pr[𝜔] +
∑︁
𝜔∈𝐸

Pr[𝜔]

=
∑︁
𝜔∈Ω

Pr[𝜔]

= 1 .

We can also consider intersections and unions of events. Notationally, instead of ∩ and ∪, we usually use the logical
operators ∧ (AND) and ∨ (OR), respectively. This captures the idea that the intersection of two events represents the
occurrence of both events simultaneously, and their union represents the occurrence of one event or the other (or both).

For two events 𝐸1, 𝐸2, the probability Pr[𝐸1 ∧ 𝐸2] that both occur simultaneously is called their joint probability
(and similarly for more events). It follows immediately that this probability is at most min{Pr[𝐸1],Pr[𝐸2]}, because
𝐸1 ∧ 𝐸2 ⊆ 𝐸1, 𝐸2. When considering the intersection of events, an important case is when, informally, the (non-
)occurrence of one event does not affect the probability of the (non-)occurrence of another event. This is known as
independence; the formal definition is as follows.

Definition 210 (Independent Events) Two events 𝐸1, 𝐸2 (of the same probability space) are independent if
Pr[𝐸1 ∧ 𝐸2] = Pr[𝐸1] · Pr[𝐸2].

21.1. Review of Probability 205

Foundations of Computer Science, Release 0.5

More generally, events 𝐸1, . . . , 𝐸𝑛 are mutually independent if Pr[𝐸1 ∧ · · · ∧ 𝐸𝑛] = Pr[𝐸1] · · ·Pr[𝐸𝑛]. They
are pairwise independent if every pair of them is independent.

Mutual independence of several events is a stronger notion than pairwise independence: a collection of events can be
pairwise independent but not mutually independent (see Example 218 below).

Example 211 (Three Fair Coins: Independence) Continuing from Example 209, we consider several events
and whether they are independent:

• The events 𝐸1 (“the first toss comes up heads”) and 𝐸2 (“the first and third tosses come up the same”)
are independent, because 𝐸1 ∧ 𝐸2 = {𝐻𝐻𝐻,𝐻𝑇𝐻} and hence Pr[𝐸1 ∧ 𝐸2] = 1/4 = 1/2 · 1/2 =
Pr[𝐸1] ·Pr[𝐸2]. This matches our intuition that whether or not the first toss comes up heads, the probability
that the third toss matches the first one is not affected.

• The three events “the first/second/third toss comes up heads” are mutually independent (and hence also
pairwise independent): their intersection is the event {𝐻𝐻𝐻}, which has probability 1/8 = (1/2)3, which
is the product of the 1/2 probabilities of the three individual events. The same holds if we replace “heads”
with “tails” in any of these events. All this matches our intuition that the results of any of the tosses do not
affect any of the other tosses.

• The two events “the first/last pair of tosses come up heads” are not independent: their intersection is the
event {𝐻𝐻𝐻}, which has probability 1/8, but they each have probability 1/4. This matches our intuition:
the first pairs of tosses coming up heads makes it more likely that the last pairs of tosses also do, because
they have the middle (second) toss in common.

• The three events “the [first two/last two/first and third] tosses come up the same” are pairwise independent,
but not mutually independent. Each of them has probability 1/2, and the intersection of any two of them is
the event {𝐻𝐻𝐻,𝑇𝑇𝑇}, which has probability 1/4 = 1/2 · 1/2. However, the intersection of all three of
them is also {𝐻𝐻𝐻,𝑇𝑇𝑇}, whereas the product of their individual 1/2 probabilities is 1/8. This failure
of mutual independence is because the occurrence of any two of these events implies the occurrence of the
third one.

When considering the union of events, the following lemma is a basic but widely applicable tool.

𝐸1

𝐸2

𝐸3
Lemma 212 (Union Bound) Let 𝐸1, 𝐸2 ⊆ Ω be events of the same probability space. Then

Pr[𝐸1 ∨ 𝐸2] ≤ Pr[𝐸1] + Pr[𝐸2] ,

with equality if the events are disjoint (i.e., if 𝐸1 ∧ 𝐸2 = ∅).

More generally, the probability of the union of any countably many events is at most the sum of their individual
probabilities, with equality if the events are pairwise disjoint.

21.1. Review of Probability 206

Foundations of Computer Science, Release 0.5

Proof 213 By definition,

Pr[𝐸1 ∨ 𝐸2] =
∑︁

𝜔∈𝐸1∨𝐸2

Pr[𝜔]

≤
∑︁
𝜔∈𝐸1

Pr[𝜔] +
∑︁
𝜔∈𝐸2

Pr[𝜔]

= Pr[𝐸1] + Pr[𝐸2] ,

where the inequality holds because the two sums on the right include every 𝜔 ∈ 𝐸1 ∨ 𝐸2 at least once, and
Pr[𝜔] ≥ 0 for those 𝜔 that are double-counted, i.e., the 𝜔 ∈ 𝐸1 ∧ 𝐸2. In particular, if 𝐸1, 𝐸2 are disjoint, then
no outcome is double-counted, hence the bound is an equality.

The more general claim (for more than two events) follows via induction, by applying the main claim (for two
events) to the first event and the union of the others, and applying the inductive hypothesis to the latter union. □

21.1.2 Random Variables

A random variable is, informally, a numerical quantity whose value is determined by the outcome of a probability
experiment. It is defined formally as follows.

Definition 214 (Random Variable) A random variable of a probability space (Ω,Pr) is a function 𝑋 : Ω → R
from the sample space to the real numbers. So, the set of potential values of 𝑋 is its image 𝑋(Ω) = {𝑋(𝜔) :
𝜔 ∈ Ω}.

For any real number 𝑣 ∈ R, the notation 𝑋 = 𝑣 denotes the event 𝑋−1(𝑣) = {𝜔 ∈ Ω : 𝑋(𝜔) = 𝑣}, i.e., the set
of all outcomes that map to value 𝑣 under 𝑋 . The events 𝑋 ≥ 𝑣, 𝑋 < 𝑣, etc. are defined similarly.

By the above definition, the probabilities of the events 𝑋 = 𝑣 and 𝑋 ≥ 𝑣 are, respectively,

Pr[𝑋 = 𝑣] =
∑︁

𝜔:𝑋(𝜔)=𝑣

Pr[𝜔] ,

Pr[𝑋 ≥ 𝑣] =
∑︁

𝜔:𝑋(𝜔)≥𝑣

Pr[𝜔] .

A frequently useful kind of random variable is an indicator random variable, also called a 0-1 random variable.

Definition 215 (Indicator Random Variable) An indicator random variable (of a probability space (Ω,Pr)) is
one that is limited to the values 0 and 1, i.e., a function 𝑋 : Ω → {0, 1}.

An indicator random variable can be defined for any event 𝐸, as 𝑋(𝜔) = 1 for every 𝜔 ∈ 𝐸 and 𝑋(𝜔) = 0 otherwise.
This means that the random variable has value 1 if the event occurs, and value 0 if the event does not occur. In the
other direction, any indicator random variable 𝑋 has a corresponding event 𝑋−1(1) = {𝜔 ∈ Ω : 𝑋(𝜔) = 1}, the set
of exactly those outcomes that make the random variable have value 1.

Similar to the case for events, we can define independence for random variables.

Definition 216 (Independent Random Variables) Random variables 𝑋1, 𝑋2 are independent if for any
𝑣1, 𝑣2 ∈ R, the events 𝑋1 = 𝑣1 and 𝑋2 = 𝑣2 are independent, i.e.,

Pr[𝑋1 = 𝑣1 ∧𝑋2 = 𝑣2] = Pr[𝑋1 = 𝑣1] · Pr[𝑋2 = 𝑣2] .

Mutual and pairwise independence of several random variables are defined similarly, as in Definition 210.

21.1. Review of Probability 207

Foundations of Computer Science, Release 0.5

Example 217 (Three Fair Coins: Random Variables and Independence) Building on Example 207 from
above, we define several random variables and consider whether they are independent.

We first define a random variable 𝑋 representing the number of heads that come up, as the function 𝑋 : Ω → R
where

𝑋(𝑇𝑇𝑇) = 0 ,
𝑋(𝐻𝑇𝑇) = 𝑋(𝑇𝐻𝑇) = 𝑋(𝑇𝑇𝐻) = 1 ,

𝑋(𝐻𝐻𝑇) = 𝑋(𝐻𝑇𝐻) = 𝑋(𝑇𝐻𝐻) = 2 ,
𝑋(𝐻𝐻𝐻) = 3 .

The event 𝑋 = 0 is {𝑇𝑇𝑇}, and hence has probability Pr[𝑋 = 0] = 1/8. The event 𝑋 ≥ 2 is
{𝐻𝐻𝑇,𝐻𝑇𝐻, 𝑇𝐻𝐻,𝐻𝐻𝐻}, and hence has probability Pr[𝑋 ≥ 2] = 4/8 = 1/2. The events 𝑋 = 1.5
and 𝑋 = 5 are both ∅, and hence each have probability zero.

For each 𝑖 = 1, 2, 3, we can define an indicator random variable 𝑋𝑖 that indicates whether the 𝑖th toss comes up
heads. Specifically, 𝑋𝑖(𝜔) = 1 if the 𝑖th character of 𝜔 is 𝐻 , and 𝑋𝑖(𝜔) = 0 otherwise. For example, 𝑋2 is the
indicator random variable for the event {𝐻𝐻𝐻,𝐻𝐻𝑇, 𝑇𝐻𝐻, 𝑇𝐻𝑇}. By inspection, Pr[𝑋𝑖 = 0] = Pr[𝑋𝑖 =
1] = 1/2 for every 𝑖.

Observe that 𝑋 = 𝑋1 +𝑋2 +𝑋3, because 𝑋 is the total number of heads, and each 𝑋𝑖 contributes 1 to the sum
if and only if the 𝑖th toss comes up heads (otherwise it contributes 0).

The random variables 𝑋1, 𝑋2, 𝑋3 are mutually independent (and hence also pairwise independent). To see this,
consider any 𝑣1, 𝑣2, 𝑣3 ∈ {0, 1}. Then the event 𝑋1 = 𝑣1 ∧𝑋2 = 𝑣2 ∧𝑋3 = 𝑣3 consists of exactly one outcome
(because the 𝑣𝑖 values collectively specify the result of every toss), so it has probability 1/8 = (1/2)3, which is
the product of the 1/2 probabilities of the three individual events 𝑋𝑖 = 𝑣𝑖.

All of the definitions and claims from this example generalize straightforwardly to the probability experiment of
tossing any number of fair coins.

Example 218 (Three Fair Coins: More Random Variables and (Non-)Independence) We can also define a
random variable 𝑌 representing the number of pairs of tosses that come up the same. That is,

𝑌 (𝐻𝐻𝐻) = 𝑌 (𝑇𝑇𝑇) = 3 ,
𝑌 (𝜔) = 1 otherwise.

For each pair of coin tosses, we can define an indicator random variable that indicates whether that pair comes
up the same. Specifically, for each 𝑖 = 1, 2, 3, consider the pair of tosses that does not include the 𝑖th toss; then
let 𝑌𝑖 = 1 if this pair comes up the same, and 𝑌𝑖 = 0 otherwise. For example, 𝑌1 is the indicator random variable
for the event {𝐻𝐻𝐻,𝐻𝑇𝑇, 𝑇𝐻𝐻, 𝑇𝑇𝑇}, so Pr[𝑌1 = 1] = Pr[𝑌1 = 0] = 1/2, and similarly for 𝑌2, 𝑌3.

Observe that 𝑌 = 𝑌1 + 𝑌2 + 𝑌3, because 𝑌 is the total number of pairs that come up the same, and each 𝑌𝑖

corresponds to one of the three pairs, contributing 1 to the sum if that pair comes up the same, and 0 otherwise.

The random variables 𝑌1, 𝑌2, 𝑌3 are pairwise independent, but not mutually independent. To see pairwise inde-
pendence, take any values 𝑣𝑖, 𝑣𝑗 ∈ {0, 1} for any 𝑖 ̸= 𝑗. Then the event 𝑌𝑖 = 𝑣𝑖 ∧ 𝑌𝑗 = 𝑣𝑗 consists of exactly
two outcomes, so it has probability 1/4, which is the product of the 1/2 probabilities of the two individual events
𝑌𝑖 = 𝑣𝑖 and 𝑌𝑗 = 𝑣𝑗 . This matches our intuition that whether one pair of coins comes up the same does not affect
whether another pair of coins does (even if the two pairs have a coin in common).

To see that the 𝑌𝑖 are not mutually independent, there are several counterexamples to the definition. For instance,
the event 𝑌1 = 1 ∧ 𝑌2 = 1 ∧ 𝑌3 = 1 is {𝐻𝐻𝐻,𝑇𝑇𝑇}, so it has probability 1/4, which is not the product of the
1/2 probabilities of the three individual events 𝑌𝑖 = 1 for 𝑖 = 1, 2, 3. This matches our intuition: if two pairs of
coins come up the same, then this implies that the third pair comes up the same as well.

21.1. Review of Probability 208

Foundations of Computer Science, Release 0.5

Definition 219 The probability distribution (also known as probability mass function) of a random variable 𝑋
is the function 𝑝𝑋 : R → [0, 1] that maps each real value to the probability that 𝑋 takes on this value, i.e.,
𝑝𝑋(𝑣) = Pr[𝑋 = 𝑣].

Example 220 (Three Fair Coins: Probability Distributions) Continuing from Example 217, the probability
distribution of the random variable 𝑋 representing the number of heads that come up is

𝑝𝑋(0) = Pr[𝑋 = 0] = 1/8 ,
𝑝𝑋(1) = Pr[𝑋 = 1] = 3/8 ,
𝑝𝑋(2) = Pr[𝑋 = 2] = 3/8 ,
𝑝𝑋(3) = Pr[𝑋 = 3] = 1/8 ,
𝑝𝑋(𝑣) = Pr[𝑋 = 𝑣] = 0 otherwise.

The probability distribution of the random variable 𝑌 from Example 218 is 𝑝𝑌 (1) = 3/4, 𝑝𝑌 (3) = 1/4, and
𝑝𝑌 (𝑣) = 0 otherwise.

21.1.3 Expectation

The probability distribution of a random variable gives the probability of each potential value of the variable. Often,
we seek more succinct “summary” quantities about the random variable. One such quantity is its expectation, which
is the “weighted average” of the random variable, where each value is weighted by its probability.

Definition 221 (Expectation) The expected value, also known as expectation, of a random variable 𝑋 is defined
as

E[𝑋] =
∑︁

𝑣∈𝑋(Ω)

𝑣 · Pr[𝑋 = 𝑣] .

The name “expected value” is a bit of a misnomer, because it is not really the value we “expect” to get in the probability
experiment. Indeed, a random variable might not even be able to take on its expected value at all! (Example 224 below
gives a simple example of this.) Instead, it is good to think of the expectation as the average value of a random variable.

Recall that

Pr[𝑋 = 𝑣] =
∑︁

𝜔:𝑋(𝜔)=𝑣

Pr[𝜔] .

Plugging this into the definition of expectation, we get that

E[𝑋] =
∑︁

𝑣∈𝑋(Ω)

𝑣 ·
(︁ ∑︁
𝜔:𝑋(𝜔)=𝑣

Pr[𝜔]
)︁

=
∑︁

𝑣∈𝑋(Ω)

∑︁
𝜔:𝑋(𝜔)=𝑣

𝑋(𝜔) · Pr[𝜔]

=
∑︁
𝜔∈Ω

𝑋(𝜔) · Pr[𝜔]

as an alternative expression of E[𝑋].

Lemma 222 If 𝑋 is an indicator random variable, then E[𝑋] = Pr[𝑋 = 1].

Proof 223 This follows directly from the definition of expectation, and the fact that an indicator random variable

21.1. Review of Probability 209

Foundations of Computer Science, Release 0.5

is limited to the values 0, 1:

E[𝑋] = 0 · Pr[𝑋 = 0] + 1 · Pr[𝑋 = 1] = Pr[𝑋 = 1] .

Example 224 (Three Fair Coins: Expectations) Continuing from Example 217, the expectation of the random
variable 𝑋 (the number of heads that come up) is

E[𝑋] =
∑︁

𝑣∈𝑋(Ω)

𝑣 · Pr[𝑋 = 𝑣]

=

3∑︁
𝑣=0

𝑣 · Pr[𝑋 = 𝑣]

= 0 · 1/8 + 1 · 3/8 + 2 · 3/8 + 3 · 1/8
= 12/8 = 3/2 .

This matches our intuition, that when we toss three fair coins, the average number of heads that come up is 3/2.
Notice that this expectation is not a value that 𝑋 can actually take on; it is merely the “average” value.

Continuing from Example 218, the expectation of 𝑌 (the number of pairs of tosses that come up the same) is

E[𝑌] =
∑︁

𝑣∈𝑌 (Ω)

𝑣 · Pr[𝑌 = 𝑣]

= 1 · 3/4 + 3 · 1/4
= 6/4 = 3/2 .

This also might (or might not!) match our intuition: there are three pairs of tosses, and each one has probability
1/2 of coming up the same. Even though these three events are not mutually independent (see Example 218), the
expected number of equal pairs of tosses happens to be 3/2. This is not a coincidence, as we will see next.

An important feature of averages is that it is impossible for all potential outcomes to be above average, nor can they all
be below average. In other words, there must be some outcome that is at least the expectation, and one that is at most
the expectation. This is formalized in the following lemma, which is known as the averaging argument.

Lemma 225 (Averaging Argument) Let 𝑋 be a random variable of a probability space (Ω,Pr). Then there
exists an outcome 𝜔 ∈ Ω for which 𝑋(𝜔) ≥ E[𝑋], and an outcome 𝜔′ ∈ Ω for which 𝑋(𝜔′) ≤ E[𝑋].

For example, building on Example 224, there exists at least one outcome for which 𝑋 , the number of heads that come
up, is at least 3/2. Indeed, 𝐻𝐻𝐻 and 𝐻𝐻𝑇 are two such outcomes.

Proof 226 Let 𝐸 = E[𝑋], and suppose for the purposes of contradiction that 𝑋(𝜔) < 𝐸 for every 𝜔 ∈ Ω. Then
by the alternative formula for the expectation, and because the Pr[𝜔] are non-negative and sum to 1 (so at least
one of them is positive),

E[𝑋] =
∑︁
𝜔∈Ω

𝑋(𝜔) · Pr[𝜔]

<
∑︁
𝜔∈Ω

𝐸 · Pr[𝜔]

= 𝐸 ·
∑︁
𝜔∈Ω

Pr[𝜔] = 𝐸 .

Thus E[𝑋] < 𝐸, which contradicts the definition of 𝐸, hence the first claim is proved. The second claim proceeds
symmetrically. □

21.1. Review of Probability 210

Foundations of Computer Science, Release 0.5

For a non-negative random variable, its expectation gives some useful information about its probability distribution. In-
formally, it “not so likely” that the random variable is “much larger than” its expectation. Markov’s inequality quantifies
this.

Theorem 227 (Markov’s Inequality) Let𝑋 be a non-negative random variable, i.e.,𝑋 never takes on a negative
value, and let 𝑎 > 0. Then

Pr[𝑋 ≥ 𝑎] ≤ E[𝑋]

𝑎
.

If E[𝑋] > 0, this implies that for any 𝑡 > 0, the probability that 𝑋 is at least 𝑡 times its expectation is at most 1/𝑡.
Notice that these statements are trivial (or “useless”) for 𝑎 ≤ E[𝑋] or 𝑡 ≤ 1, because in these cases Markov’s inequality
gives probability upper bounds that are ≥ 1, and the probability of any event is trivially ≤ 1. So, Markov’s inequality
is useful only when we take 𝑎 > E[𝑋] or 𝑡 > 1.

As an example, if the class average on an exam is 70 points (and negative points are not possible), then Markov’s
inequality implies that the fraction of the class that earned at least 𝑎 = 90 points is at most 70/90 = 7/9. (Stated
probabilistically: if we choose a student uniformly at random, then the probability that the student earned ≥ 90 points
is ≤ 7/9.) Similarly, at most (7/6)ths of the class earned ≥ 60 points, but this is a trivial statement.

Proof 228 By definition of expectation,

E[𝑋] =
∑︁

𝑣∈𝑋(Ω)

𝑣 · Pr[𝑋 = 𝑣]

=
(︁∑︁
𝑣<𝑎

𝑣 · Pr[𝑋 = 𝑣]
)︁
+
(︁∑︁
𝑣≥𝑎

𝑣 · Pr[𝑋 = 𝑣]
)︁

≥
∑︁
𝑣≥𝑎

𝑣 · Pr[𝑋 = 𝑣]

≥
∑︁
𝑣≥𝑎

𝑎 · Pr[𝑋 = 𝑣]

= 𝑎 · Pr[𝑋 ≥ 𝑎] .

The first inequality holds because 𝑋 is non-negative, so every 𝑣 in the first sum is non-negative, and therefore that
sum is non-negative. The second inequality holds because 𝑣 ≥ 𝑎, and all the Pr[𝑋 = 𝑣] are non-negative. The
last equality holds because the event 𝑋 ≥ 𝑎 is the union of all the disjoint events 𝑋 ≥ 𝑣 for 𝑣 ≥ 𝑎.

Finally, dividing both sides of the inequality by 𝑎 > 0 (which preserves the direction of the inequality), we get
that

E[𝑋]

𝑎
≥ Pr[𝑋 ≥ 𝑎] .

The following ‘reverse’ version of Markov’s inequality says, informally, that if a random variable is upper bounded,
then it has a certain positive probability of exceeding any value less than its expectation. (Note that by the averaging
argument, there is some nonzero probability that the random variable is at least its expectation. The reverse Markov
inequality gives a specific probability bound, which increases as the threshold of interest decreases.)

Theorem 229 (Reverse Markov’s Inequality) Let 𝑋 be a random variable that is never larger than some value
𝑏. Then for any 𝑎 < 𝑏,

Pr[𝑋 ≥ 𝑎] ≥ Pr[𝑋 > 𝑎] ≥ E[𝑋]− 𝑎

𝑏− 𝑎
.

Notice that the statement is trivial (or “useless”) for 𝑎 ≥ E[𝑋], because in this case it gives a probability lower bound
that is ≤ 0, and the probability of any event is ≥ 0.

21.1. Review of Probability 211

Foundations of Computer Science, Release 0.5

For example, if the class average on an exam is 70 points out of a maximum of 𝑏 = 100, then the ‘reverse’ Markov
inequality implies that at least (70− 60)/(100− 60) = 1/4 of the class earned more than 𝑎 = 60 points. However, it
does not say anything about how much of the class earned 70 or more points.

Proof 230 The first inequality holds because the event 𝑋 > 𝑎 is a subset of the event 𝑋 ≥ 𝑎. So, it remains to
prove the second inequality.

Define the random variable 𝑌 = 𝑏 −𝑋 . This is non-negative because 𝑋 is never larger than 𝑏, so we can apply
Markov’s inequality to it, and it has expectation E[𝑌] = 𝑏− E[𝑋]. Hence,

Pr[𝑋 ≤ 𝑎] = Pr[𝑏− 𝑌 ≤ 𝑎]

= Pr[𝑌 ≥ 𝑏− 𝑎]

≤ E[𝑌]

𝑏− 𝑎

=
𝑏− E[𝑋]

𝑏− 𝑎
.

So, considering the complementary event,

Pr[𝑋 > 𝑎] = 1− Pr[𝑋 ≤ 𝑎] ≥ (𝑏− 𝑎)− (𝑏− E[𝑋])

𝑏− 𝑎
=

E[𝑋]− 𝑎

𝑏− 𝑎
.

Often, we can express a random variable𝑋 as a linear combination of some other, typically “simpler,” random variables
𝑋𝑖. We can then apply linearity of expectation to compute the expectation of 𝑋 from the expectations of the 𝑋𝑖.
Importantly, the 𝑋𝑖 do not need to be independent in order for linearity of expectation to apply.

Theorem 231 (Linearity of Expectation) Let 𝑋1, 𝑋2, . . . be any countably many random variables, and
𝑐1, 𝑐2, . . . ∈ R. Then

E
[︁∑︁

𝑖

𝑐𝑖 ·𝑋𝑖

]︁
=
∑︁
𝑖

𝑐𝑖 · E[𝑋𝑖] .

In other words, constant-factor scalings and summations can be “moved in and out of” expectations.

Proof 232 We prove the case for a linear combination of two variables; the general case then follows by induction.
From the alternative formulation of expectation,

E[𝑐1𝑋1 + 𝑐2𝑋2] =
∑︁
𝜔∈Ω

(𝑐1𝑋1(𝜔) + 𝑐2𝑋2(𝜔)) · Pr[𝜔]

=
∑︁
𝜔∈Ω

(𝑐1𝑋1(𝜔) · Pr[𝜔] + 𝑐2𝑋2(𝜔) · Pr[𝜔])

=
∑︁
𝜔∈Ω

𝑐1𝑋1(𝜔) · Pr[𝜔] +
∑︁
𝜔∈Ω

𝑐2𝑋2(𝜔) · Pr[𝜔]

= 𝑐1 ·
∑︁
𝜔∈Ω

𝑋1(𝜔) · Pr[𝜔] + 𝑐2 ·
∑︁
𝜔∈Ω

𝑋2(𝜔) · Pr[𝜔]

= 𝑐1 · E[𝑋1] + 𝑐2 · E[𝑋2] .

Example 233 (Three Fair Coins: Linearity of Expectation) Continuing from Example 217, recall that the ran-
dom variable 𝑋 is the number of heads that come up. In Example 224, we showed directly via the definition that
E[𝑋] = 3/2. What follows is an alternative, simpler way—especially when generalizing to more coin tosses—to
obtain the same result using linearity of expectation.

21.1. Review of Probability 212

Foundations of Computer Science, Release 0.5

Recall that 𝑋 is the sum of the three indicator random variables 𝑋𝑖 that indicate whether the 𝑖th toss comes up
heads: 𝑋 = 𝑋1 + 𝑋2 + 𝑋3. Recall from Example 217 that E[𝑋𝑖] = Pr[𝑋𝑖 = 1] = 1/2 for every 𝑖. So, by
linearity of expectation (Lemma 231),

E[𝑋] = E[𝑋1 +𝑋2 +𝑋3] = E[𝑋1] + E[𝑋2] + E[𝑋3] = 3/2 .

Similarly, in Example 218, we defined the random variable 𝑌 to be the number of pairs of tosses that come up
the same, and showed directly from the definition that E[𝑌] = 3/2.

We observed that 𝑌 is the sum of the three indicator random variables 𝑌𝑖 that indicate whether the corresponding
pair of tosses come up the same: 𝑌 = 𝑌1 + 𝑌2 + 𝑌3. Even though these indicator random variables are not
mutually independent, we can still apply linearity of expectation to their sum:

E[𝑌] = E[𝑌1 + 𝑌2 + 𝑌3] = 3/2 .

Example 234 (Biased Coins) Suppose we repeatedly flip a biased coin that has probability 𝑝 ∈ [0, 1] of coming
up heads. We can determine the expected number of heads in 𝑛 flips, using indicator random variables and
linearity of expectation.

For 𝑖 = 1, . . . , 𝑛, define 𝑋𝑖 to be the indicator random variable indicating whether the 𝑖th flip comes up heads.
Then E[𝑋𝑖] = Pr[𝑋𝑖] = 𝑝. Define 𝑋 to be the total number of heads that come up in 𝑛 flips, and observe that
𝑋 =

∑︀𝑛
𝑖=1 𝑋𝑖. So, by linearity of expectation,

E[𝑋] = E
[︁ 𝑛∑︁
𝑖=1

𝑋𝑖

]︁
=

𝑛∑︁
𝑖=1

E[𝑋𝑖] =

𝑛∑︁
𝑖=1

𝑝 = 𝑝 · 𝑛 .

By contrast, deriving this expectation directly via the definitions (of expectation, and of the random variable 𝑋)
would be rather complicated: we would need to determine Pr[𝑋 = 𝑣] for each 𝑣 = 0, 1, . . . , 𝑛, then analyze∑︀𝑛

𝑖=1 𝑣 · Pr[𝑋 = 𝑣]. Linearity of expectation makes the derivation almost trivial.

21.1.4 Analyzing Rock-Paper-Scissors

Now let’s return to the rock-paper-scissors example, modeling one round of the game as a probability space, and an-
alyzing the appropriate events. The sample space—i.e., the set of outcomes that can potentially occur—is the set
Ω = {𝑅,𝑃, 𝑆}2 = {𝑅𝑅,𝑅𝑃,𝑅𝑆, 𝑃𝑅, 𝑃𝑃, 𝑃𝑆, 𝑆𝑅, 𝑆𝑃, 𝑆𝑆} of possible move pairs made by the two players, where
𝑅,𝑃, 𝑆 respectively denote the moves rock, paper, and scissors, and the 𝑖th character represents player 𝑖’s move, for
𝑖 = 1, 2.

Next, let 𝑅𝑖 be the event that player 𝑖 plays rock, i.e., 𝑅1 = {𝑅𝑅,𝑅𝑃,𝑅𝑆} and 𝑅2 = {𝑅𝑅,𝑃𝑅, 𝑆𝑅}, and similarly
for 𝑃𝑖 and 𝑆𝑖.

We need to assign probabilities to the outcomes. Player 𝑖’s strategy can be seen as choosing a move at random according
to some specified probabilities of events 𝑅𝑖, 𝑃𝑖, 𝑆𝑖, which must sum to 1 because they partition the sample space. (This
is true even for deterministic strategies, in which case the chosen move has probability 1.) Since the players move
simultaneously, we model their choices as independent. So, letting 𝑀𝑖 be any one of 𝑅𝑖, 𝑃𝑖, 𝑆𝑖 for 𝑖 = 1, 2, we see
that the event 𝑀1 ∧𝑀2 consists of a single outcome, and we have that

Pr[𝑀1 ∧𝑀2] = Pr[𝑀1] · Pr[𝑀2] .

Now, let 𝑊1 = {𝑅𝑆,𝑃𝑅, 𝑆𝑃} be the event that player 1 wins. Suppose that player 1 plays uniformly at random, i.e.,
plays R,P,S each with equal probability, i.e., Pr[𝑅1] = Pr[𝑃1] = Pr[𝑆1] = 1/3. Then no matter how player 2 plays,

21.1. Review of Probability 213

Foundations of Computer Science, Release 0.5

the probability that player 1 wins is

Pr[𝑊1] = Pr[𝑅1 ∧ 𝑆2] + Pr[𝑃1 ∧𝑅2] + Pr[𝑆1 ∧ 𝑃2]

= Pr[𝑅1] · Pr[𝑆2] + Pr[𝑃1] · Pr[𝑅2] + Pr[𝑆1] · Pr[𝑃2]

=
1

3
(Pr[𝑆2] + Pr[𝑅2] + Pr[𝑃2])

= 1/3 .

The first equation uses independence, and the final equation uses the fact that the events 𝑆2, 𝑅2, 𝑃2 partition the sample
space, so their probabilities must sum to 1. The conclusion is that playing uniformly at random yields a 1/3 probability
of winning, no matter what strategy the opponent uses. This is a significant improvement over any deterministic strategy,
against which an opponent can win with certainty.71 A similar analysis shows that the probabilities of tying and of losing
are both 1/3 as well.

The rock-paper-scissors example is illustrative of a more general notion of considering algorithms as games. In this
perspective, we view one “player” as choosing an algorithm for a computational problem. A second player known as
the adversary then chooses an input (of a certain size) to the algorithm. The adversary aims to maximize the number
of steps taken by the algorithm on the given input; i.e., to induce the algorithm’s worst-case runtime behavior.

If the first player chooses a deterministic algorithm, then the adversary can find an input that maximizes the number of
steps—even if the algorithm happens to be much faster on “most” other inputs. On the other hand, if the first player
chooses a randomized algorithm—i.e., one that makes some random choices—then the adversary might not be able to
induce worst-case behavior, because it cannot predict the algorithm’s random choices. In a good randomized algorithm,
the random choices will tend to avoid the worst-case behavior no matter what the input is, although there is still some
(ideally very small) probability that it will make “unlucky” choices that lead to poor performance.

21.2 Randomized Approximation Algorithms

We can use randomness to design simple algorithms that produce an 𝛼-approximation (page 192) in expectation, mean-
ing that the expected value of the output is within an 𝛼 factor of the value of an optimal solution.

As an example, recall the search version of the 3SAT problem: given a 3CNF (page 169) Boolean formula, find a
satisfying assignment for it, if one exists. Since a 3CNF formula is the AND of several clauses, this problem is asking
for an assignment that satisfies all of the clauses simultaneously.

Because 3SAT is NP-hard, there is no efficient algorithm for this problem unless P = NP. So, let us relax the goal,
and seek an assignment that satisfies as many clauses as we can manage. In other words, we seek an approximation
algorithm for the problem of maximizing the number of satisfied clauses.

In what follows, we actually restrict the input to be what we call an “exact”-3CNF formula. This is a 3CNF formula
with the added restriction that each clause involves three distinct variables. (Different clauses can involve the same
variable, however.) For example, the clause

(𝑥 ∨ ¬𝑦 ∨ ¬𝑧)

is allowed, but the clause

(𝑥 ∨ ¬𝑦 ∨ ¬𝑥)

is not, since it involves only two distinct variables (the literals 𝑥 and ¬𝑥 involve the same variable). Similarly, the clause
(𝑦 ∨ 𝑦 ∨ ¬𝑧) is not allowed.

The problem of finding an assignment that maximizes the number of satisfied clauses in a given exact-3CNF formula
is known as Max-E3SAT, and its decision version is NP-complete. Despite this, there is a very simple randomized

71 In fact, it can be shown that a winning probability of 1/3 is the best any strategy can obtain against an optimal opponent strategy. Moreover,
the strategy that chooses a move uniformly at random is the only one that has this property.

21.2. Randomized Approximation Algorithms 214

Foundations of Computer Science, Release 0.5

algorithm that obtains a 7/8-approximation, in expectation. The algorithm is as follows: assign random truth values
(true or false) to the formula’s variables, uniformly and independently. That is, for each variable, assign it to be true or
false each with 1/2 probability, independently of all the others.

Theorem 235 Let 𝜑 be an exact-3CNF formula with 𝑚 clauses. Then assigning its variables with uniformly
random and independent truth values satisfies (7/8)ths of 𝜑’s clauses in expectation, i.e.,

E[number of satisfied clauses in 𝜑] = 7𝑚/8 .

In particular, this is a 7/8-approximation algorithm for Max-E3SAT, in expectation.

The proof of this theorem proceeds by a powerful and widely applicable strategy. First, we define a suitable probability
space and a random variable 𝑋 that captures the quantity of interest, namely, the number of satisfied clauses. This
variable 𝑋 typically has a complicated probability distribution that makes it hard to analyze its expectation directly.
Instead, we express 𝑋 as the sum of several simpler indicator random variables 𝑋𝑖. By linearity of expectation, E[𝑋]
is the sum of the individual expectations E[𝑋𝑖] = Pr[𝑋𝑖 = 1], where the equality holds because the 𝑋𝑖 are indicators.
Finally, we analyze the probabilities of the individual events 𝑋𝑖 = 1, which are simple to understand, and arrive at the
conclusion.

Proof 236 First, suppose that the expected number of satisfied clauses is indeed 7𝑚/8 (which we prove below).
The optimal number of clauses that can be simultaneously satisfied is OPT ≤ 𝑚, so the expected number of
satisfied clauses is 7𝑚/8 ≥ (7/8) · OPT, hence this is indeed a 7/8-approximation algorithm for Max-E3SAT.

We now analyze the expected number of satisfied clauses. The probability space is the set of all assignments to
the variables of 𝜑, where each assignment is equally likely—i.e., the assignment is chosen uniformly at random.

Now, define 𝑋 be the random variable for the number of satisfied clauses in 𝜑. That is, for any particular assign-
ment 𝛼, we define 𝑋(𝛼) to be the number of clauses satisfied by 𝛼. Because the clauses of 𝜑 can share variables
in various ways, the probability distribution and expectation of 𝑋 can be quite complicated and difficult to analyze
directly. Instead, we decompose 𝑋 into a sum of much simpler indicator variables.

Specifically, for each 𝑖 = 1, . . . ,𝑚 we define an indicator random variable 𝑋𝑖 that indicates whether the 𝑖th clause
is satisfied, i.e., 𝑋𝑖 = 1 if so and 𝑋𝑖 = 0 if not. Then because 𝑋 is the total number of satisfied clauses, we have
that

𝑋 = 𝑋1 + · · ·+𝑋𝑚 =

𝑚∑︁
𝑖=1

𝑋𝑖 .

So, by linearity of expectation (Lemma 231),

E[𝑋] = E
[︁ 𝑚∑︁
𝑖=1

𝑋𝑖

]︁
=

𝑚∑︁
𝑖=1

E[𝑋𝑖] .

It is important to realize that because the clauses of 𝜑 can share variables in various ways, the indicators 𝑋𝑖 are
typically not independent, even pairwise. For example, because clauses (𝑥 ∨ 𝑦 ∨ ¬𝑧) and (𝑢 ∨ ¬𝑣 ∨ 𝑥) share the
variable 𝑥, the former clause being satisfied makes it more likely that the latter clause is also satisfied (i.e., their
indicators are positively correlated). Fortunately, linearity of expectation holds even for dependent variables, so
the above equation is still valid.

All that remains to analyze E[𝑋𝑖] = Pr[𝑋𝑖 = 1] (see Lemma 222), i.e., the probability that a uniformly random
assignment satisfies the 𝑖th clause. Every clause in the exact-3CNF formula 𝜑 is the OR of exactly three literals
involving distinct variables, e.g., (𝑥∨¬𝑦 ∨ 𝑧). The clause fails to be satisfied exactly when all three of its literals
are false. Because the variables are assigned uniformly at random, each literal has probability 1/2 of being false
(regardless of whether the literal is a variable or its negation). And because the literals in clause 𝑖 involve distinct

21.2. Randomized Approximation Algorithms 215

Foundations of Computer Science, Release 0.5

variables, their values are mutually independent. Thus,

Pr[𝑋𝑖 = 0] = Pr[clause 𝑖 is unsatisfied]
= Pr[the 1st and 2nd and 3rd literals of clause 𝑖 are all false]

=

3∏︁
𝑗=1

Pr[the 𝑗th literal of clause 𝑖 is false]

= (1/2)3 = 1/8 .

Next, because 𝑋𝑖 is an indicator random variable (it is limited to values 0 and 1),

E[𝑋𝑖] = Pr[𝑋𝑖 = 1] = 1− Pr[𝑋𝑖 = 0] = 7/8 .

Finally, returning to 𝑋 itself,

E[𝑋] =

𝑚∑︁
𝑖=1

E[𝑋𝑖] =

𝑚∑︁
𝑖=1

(7/8) = 7𝑚/8 .

By the averaging argument (Lemma 225), from Theorem 235 we can further conclude that for any exact-3CNF formula,
there exists an assignment that satisfies at least 7/8ths of the clauses. Notice that this is a “deterministic” statement—it
makes no reference to probability—but we proved it using the tools of probability, and it is not obvious how we could
hope to do so without them! (This is an example of the “probabilistic method,” which is a very powerful technique
with many applications.)

Theorem 235 says that if we assign variables at random, then on average, 7/8ths of the clauses are satisfied. However,
this does not say anything about how likely it is that a certain fraction of clauses are satisfied. For example, we might
want a lower bound on the probability that at least half (or two-thirds, or three-quarters, or 90%) of the clauses are
satisfied. Written in terms of the random variable 𝑋 representing the number of satisfied clauses, we might hope to get
a lower bound on Pr[𝑋 ≥ 𝑐 ·𝑚] for 𝑐 = 1/2, or various other 𝑐 ∈ [0, 1].

Notice that because 𝑋 is defined as the number of satisfied clauses, it is non-negative (i.e., it never takes on a negative
value). Thus, we can apply Markov’s inequality (Lemma 227) to obtain that

Pr[𝑋 ≥ 𝑚/2] ≤ 7𝑚/8

𝑚/2
=

7

4
.

Unfortunately, this is a trivial (or “useless”) statement, because the probability bound is 7/4 > 1, and the probability
of any event is ≤ 1. Furthermore, the probability bound goes in the “wrong direction” from what we want: it says that
the probability of satisfying at least half the clauses is at most some value, whereas we hope to show that it is at least
some positive value. An upper bound is not useful to us, because it is consistent with the actual probability being zero.
So, even if we replaced 𝑐 = 1/2 with, say, 𝑐 = 9/10 to get a nontrivial bound, the statement would not be of the kind
we want. We need to use a different tool.

Observe that the number of satisfied clauses 𝑋 cannot exceed 𝑚, the total number of clauses in the given formula. So,
we can apply the ‘reverse’ Markov inequality (Lemma 229) to it, with 𝑏 = 𝑚. Setting 𝑎 = 𝑚/2 < 𝑏, we get that

Pr[𝑋 > 𝑚/2] ≥ 7𝑚/8−𝑚/2

𝑚−𝑚/2
=

3𝑚/8

𝑚/2
= 3/4 .

That is, a random assignment satisfies more than half the clauses with at least 75 percent probability. More generally,
for any 𝑐 < 7/8, setting 𝑎 = 𝑐 ·𝑚 < 𝑏,

Pr[𝑋 > 𝑐 ·𝑚] ≥ 7𝑚/8− 𝑐 ·𝑚
𝑚− 𝑐 ·𝑚 =

7/8− 𝑐

1− 𝑐
> 0 .

So, for any 𝑐 < 7/8 there is a positive probability of satisfying more than a 𝑐 fraction of the clauses. However, the
‘reverse’ Markov inequality does not tell us anything useful about the probability of satisfying 7/8ths or more of the
clauses.

21.2. Randomized Approximation Algorithms 216

Foundations of Computer Science, Release 0.5

Derandomized Algorithm for Max-E3SAT

Remarkably, the randomized algorithm for Max-E3SAT can be derandomized into a deterministic algorithm that is
guaranteed to satisfy at least 7/8ths of the input formula’s clauses. The algorithm considers each variable in turn,
computes conditional expectations for each potential choice of its truth value, and sets the variable according to a
best choice. This is called the method of conditional probabilities72 (or the method of conditional expectations). It is
notable that even though the algorithm is entirely deterministic, it is heavily inspired by the randomized algorithm,
and it is not clear how it could have been discovered without taking a probabilistic perspective.

Let 𝐴,𝐵 be events with Pr[𝐵] > 0. The conditional probability Pr[𝐴|𝐵] captures the probability that event 𝐴
occurs, given that event 𝐵 occurs. It is defined as

Pr[𝐴|𝐵] =
Pr[𝐴 ∩𝐵]

Pr[𝐵]

=

∑︀
𝜔∈𝐴∩𝐵 Pr[𝜔]∑︀
𝜔∈𝐵 Pr[𝜔]

.

Next, the conditional expectation of a random variable 𝑋 conditioned on event 𝐵, which captures the “average”
value of 𝑋 given that event 𝐵 occurs, is defined as

E[𝑋|𝐵] =
∑︁

𝑣∈𝑋(Ω)

𝑣 · Pr[𝑋 = 𝑣|𝐵] .

It can be shown that

E[𝑋] = Pr[𝐵] · E[𝑋|𝐵] + Pr[𝐵] · E[𝑋|𝐵] .

Since E[𝑋] is the weighted average of E[𝑋|𝐵] and E[𝑋|𝐵], by an averaging argument, at least one of E[𝑋|𝐵] or
E[𝑋|𝐵] is ≥ E[𝑋].

We now apply this to Max-E3SAT. Let 𝜑 be an exact-3CNF formula with 𝑚 clauses and 𝑛 variables 𝑥1, . . . , 𝑥𝑛. Let
𝑋 be the number of satisfied clauses for a random assignment. Theorem 235 established that E[𝑋] = 7𝑚/8. Now
consider the events 𝑥1 = 0 and 𝑥1 = 1. These are complementary events, so by the reasoning above, at least one
of E[𝑋|𝑥1 = 0] or E[𝑋|𝑥1 = 1] is ≥ 7𝑚/8. This generalizes to the case where variables 𝑥1, . . . , 𝑥𝑖−1 have been
set so that the conditional expectation of 𝑋 remains ≥ 7𝑚/8, and we consider the two cases 𝑥𝑖 = 0 and 𝑥𝑖 = 1.
Thus, we can deterministically build an assignment 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) one entry at time, by doing the following
for each variable 𝑥𝑖 in sequence, i.e., for 𝑖 = 1, . . . , 𝑛:

• Compute E[𝑋|𝑥1 = 𝛼1, . . . , 𝑥𝑖−1 = 𝛼𝑖−1, 𝑥𝑖 = 0] and E[𝑋|𝑥1 = 𝛼1, . . . , 𝑥𝑖−1 = 𝛼𝑖−1, 𝑥𝑖 = 1]. In
other words, given the partial assignment so far, consider both 𝑥𝑖 = 0 and 𝑥𝑖 = 1 and compute the resulting
conditional expectations of 𝑋 .

• Compute the conditional expectations for partial assignments using linearity of expectation over the clauses,
and by considering the values of any variables that have already been set. For example, consider the clause
(𝑥1 ∨ ¬𝑥3 ∨ 𝑥7). If we have set 𝑥1 = 1, then the expectation for this clause is 1, regardless of how the other
variables have been set (or not). But if we have set 𝑥1 = 0 and the other two variables are not yet set, the
expectation for this clause is 3/4.

• If setting 𝑥𝑖 = 0 produces a larger expectation, then fix 𝛼𝑖 = 0, otherwise fix 𝛼𝑖 = 1.

At each step, at least one of the two choices must have expectation at least 7𝑚/8, by the averaging argument. Thus, in
the end, the full assignment also has expectation at least 7𝑚/8. But at that point, there are no more random choices
to make (i.e., variables to set), so the full assignment must satisfy at least 7𝑚/8 clauses.

The full algorithm is as follows:

21.2. Randomized Approximation Algorithms 217

https://en.wikipedia.org/wiki/Method_of_conditional_probabilities

Foundations of Computer Science, Release 0.5

Input: an exact-3CNF formula
Output: an assignment that satisfies at least 7/8ths of the formula’s clauses

function ApproxExact3SAT(𝜑)
𝐴 = an empty assignment for 𝜑
for all variables 𝑥𝑖 in 𝜑 do

for all Boolean values 𝑣 = 0, 1 do
𝜇𝑣 = ExpectedSatisfied(𝜑,𝐴+ (𝑥𝑖 = 𝑣))

if 𝜇0 > 𝜇1 then
𝐴 = 𝐴+ (𝑥𝑖 = 0)

else
𝐴 = 𝐴+ (𝑥𝑖 = 1)

return 𝐴
Input: an exact 3CNF formula and a partial assignment for it
Output: the expected number of satisfied clauses, over a uniformly random completion of the assignment

function ExpectedSatisfied(𝜑,𝐴)
𝜇 = 0
for all clauses 𝐶𝑗 in 𝜑 do

if 𝐶𝑗 is satisfied by 𝐴 then
𝜇 = 𝜇+ 1

else
𝑘 = the number of unassigned variables (by 𝐴) in 𝐶𝑗

𝜇 = 𝜇+ (1− 1/2𝑘)

return 𝜇

The ExpectedSatisfied subroutine uses linearity of expectation to compute the expected number of satisfied clauses,
for a uniformly random completion of the given partial assignment. Let 𝑋 be the total number of satisfied clauses,
and let 𝑋𝑗 be the indicator random variable for whether clause 𝐶𝑗 is satisfied. Then if 𝐶𝑗 is already satisfied by the
given partial assignment 𝐴, E[𝑋𝑗 |𝐴] = 1. If 𝐶𝑗 is not yet satisfied, the probability of it being satisfied by a random
assignment of the remaining variables depends on how many unset variables 𝐶𝑗 has. By the same reasoning as for
the randomized algorithm, this is 1− (1/2)𝑘 if there are 𝑘 unset variables. Thus, E[𝑋𝑗 |𝐴] = 1− (1/2)𝑘.

Exercise 237 Recall the max-cut (page 196) problem. The following is a randomized algorithm that outputs a
random cut in a given undirected graph (which has no self-loop edge, without loss of generality):

function RandomCut(𝐺 = (𝑉,𝐸))
𝑆 = ∅
for all 𝑣 ∈ 𝑉 do

add 𝑣 to 𝑆 with probability 1/2

return 𝑆

Recall that 𝐶(𝑆) is the set of crossing edges for the cut 𝑆, i.e., those that have exactly one endpoint in 𝑆. The size
of the cut is |𝐶(𝑆)|.

a) Prove that in expectation, this algorithm outputs a 1/2-approximation of a maximum cut in the given undi-
rected graph. That is, the expected size of the returned cut is at least half the size of a maximum cut.

Hint: Use linearity of expectation to show that in expectation, half of the edges of the graph are in 𝐶(𝑆).
Similarly, give an upper bound on the size of a maximum cut (also in terms of the number of edges in the
graph).

b) Conclude that, for any undirected graph 𝐺 = (𝑉,𝐸), there exists a cut of size at least |𝐸|/2. (By contrast,

72 https://en.wikipedia.org/wiki/Method_of_conditional_probabilities

21.2. Randomized Approximation Algorithms 218

Foundations of Computer Science, Release 0.5

in Theorem 203 we saw an efficient deterministic algorithm that finds such a cut, with certainty.)

21.3 Quick Sort

Another example of an algorithm that takes advantage of randomness is quick sort. This is a recursive algorithm that
sorts an array as follows:

1. First, it chooses some element of the array as the pivot.

2. Then, it partitions the array around the pivot, by comparing the pivot to every other element, placing all the
smaller elements to the “left” of the pivot—not necessarily in sorted order—and all the larger ones to the “right”
of the pivot. Without loss of generality, we assume that the array elements are distinct, by breaking ties according
to the elements’ positions in the array.

3. Finally, it recursively sorts the two subarrays to the left and right of the pivot, which results in the entire array
being sorted.

The following is an illustration of an execution of quick sort, with the recursive work elided:

99 6 15 70 52 37 86 4 0

6 15 4 0 37 99 70 52 86 0 4 6 15 37 52 70 86 99

partition

recursively
sort partitions

The running time of quick sort is dominated by the number of comparisons between pairs of elements. Once a pivot is
selected, partitioning an array of 𝑛 elements compares every other element to the pivot. This is a total of 𝑛−1 = Θ(𝑛)
comparisons of non-recursive work, which is followed by the recursive calls on the two subarrays on each side of the
pivot. If selecting the pivot takes𝑂(𝑛) time and can guarantee that the two subarrays are “balanced,” i.e., approximately
equal in size, then the recurrence for the total number of comparisons (and hence the overall running time) is

𝑇 (𝑛) = 2𝑇 (𝑛/2) + Θ(𝑛) .

This is the same recurrence as for merge sort (page 13), and it has the closed-form solution 𝑇 (𝑛) = Θ(𝑛 log 𝑛).
However, quick sort tends to be faster in practice than merge sort and other deterministic 𝑂(𝑛 log 𝑛) sorting algorithms,
in large part because it is fast and easy to implement in place—i.e., reordering the array within its own memory space,
using only a small amount of auxiliary memory. (By comparison, the standard merge subroutine from merge sort makes
a full copy of the array with each call.) Thus, variants of quick sort are widely used in practice.

One way to guarantee a balanced partition is to use the median element as the pivot, which can be found in linear time73.
However, this subroutine is rather complicated to implement, and its linear runtime has a fairly large hidden constant
factor.

A much simpler and more practical solution is to choose a uniformly random array element as the pivot. The pseudocode
is as follows.

Algorithm 238 (Randomized Quick Sort)

function RandQuickSort(𝐴[1, . . . , 𝑛])
if 𝑛 = 1 then return 𝐴
𝑝 = an index chosen uniformly at random from {1, . . . , 𝑛}

73 https://en.wikipedia.org/wiki/Median_of_medians

21.3. Quick Sort 219

https://en.wikipedia.org/wiki/Median_of_medians

Foundations of Computer Science, Release 0.5

(𝐿,𝑅) = Partition(𝐴, 𝑝)
return RandQuickSort(𝐿) +𝐴[𝑝]+ RandQuickSort(𝑅)

function Partition(𝐴[1, . . . , 𝑛], 𝑝)
initialize empty arrays 𝐿,𝑅
for 𝑖 = 1 to 𝑛 do

if 𝑖 ̸= 𝑝 and 𝐴[𝑖] < 𝐴[𝑝] then
𝐿 = 𝐿+𝐴[𝑖]

else if 𝑖 ̸= 𝑝 then
𝑅 = 𝑅+𝐴[𝑖]

return (𝐿,𝑅)

The following figure illustrates a possible execution of RandQuickSort on an example input array, with the random
choices of pivot elements highlighted, and the rank of each element displayed below it. The rank of an element is the
number of elements in the array (including itself) that are less than or equal to it. So, the smallest element has rank 1,
the next-smallest has rank 2, etc.

99 6 15 70 52 37 86 4 0
9 3 4 7 6 5 8 2 1

6 15 4 0
3 4 2 1

99 70 52 86
9 7 6 8

37
5

15
4

6 4 0
3 2 1

37
5

70 52
7 6

86
8

99
9

15
4

37
5

6
3

4
2

0
1

52
6

70
7

86
8

99
9

items
ranks

The running time of RandQuickSort is a random variable that depends in a complicated way on the particular ran-
dom choices of pivots made throughout the algorithm. Roughly speaking, choices of pivots that yield “unbalanced”
subarrays tend to yield larger running times than ones that yield more balanced subarrays. How can we hope to ana-
lyze this very complicated probability experiment? As we did above, we express the running time as a sum of much
simpler indicator variables, apply linearity of expectation, and then analyze these indicators individually. The rest of
this section is devoted to proving the following theorem.

Theorem 239 On any array of 𝑛 elements, the expected running time of RandQuickSort is 𝑂(𝑛 log 𝑛).

Recall that the running time of RandQuickSort is dominated by the number of comparisons of pairs of array elements.
First observe that if a certain pair of elements is ever compared, then it is never compared again. This is because at the
time of comparison, one of the elements is the pivot, which is never compared with anything after partitioning around
it is complete. So, the total number of comparisons done by RandQuickSort is the total number of distinct pairs of

21.3. Quick Sort 220

Foundations of Computer Science, Release 0.5

elements that are ever compared.

Accordingly, define the random variable 𝑋 to be the total number of comparisons during the entire execution of quick
sort on an arbitrary array of 𝑛 elements. In additions, for any ranks 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, define 𝑋𝑖𝑗 to be the indicator
random variable that indicates whether the pair of elements having ranks 𝑖, 𝑗 are ever compared during the execution,
i.e., 𝑋𝑖𝑗 = 1 if this pair is ever compared, and 𝑋𝑖𝑗 = 0 otherwise. By the observations from the previous paragraph,

𝑋 =
∑︁

1≤𝑖<𝑗≤𝑛

𝑋𝑖𝑗 =

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑋𝑖𝑗 .

Therefore, by linearity of expectation (Lemma 231), the expected total number of comparisons is

E[𝑋] =

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

E[𝑋𝑖𝑗] .

So, for every 𝑖 < 𝑗 it just remains to analyze the individual expectations E[𝑋𝑖𝑗] = Pr[𝑋𝑖𝑗 = 1] in isolation (where
the equality holds by Lemma 222), and sum them. (As above, the random variables 𝑋𝑖𝑗 are highly correlated in
difficult-to-understand ways, but this does not matter for linearity of expectation.)

Under what conditions are the elements of ranks 𝑖 < 𝑗 ever compared, and what is the probability Pr[𝑋𝑖𝑗 = 1] that
this occurs? By inspection of Algorithm 238, we see that elements are compared only in the Partition subroutine. In
particular, the only comparisons made during a call to Partition are between the selected pivot element and all the
other elements in the input subarray. This has two important implications:

• When a subarray is input to Partition, none of its elements have been compared with each other yet.

• In the subarray input to Partition, if one element is less than the pivot and another is greater than the pivot,
then these two elements are placed on opposite sides of the pivot, and thus are never compared with each other
(because the recursive calls operate completely separately on the two sides).

Therefore, the two elements 𝑎 < 𝑏 having ranks 𝑖 < 𝑗 are compared if and only if the first pivot chosen from the range
[𝑎, 𝑏] is either 𝑎 or 𝑏. To elaborate: for as long as pivots are chosen from outside this range, 𝑎 and 𝑏 remain in the same
subarray, and have not yet been compared. Then, once an element from this range is chosen as a pivot:

• it is either 𝑎 or 𝑏, in which case 𝑎 and 𝑏 are compared with each other, or

• it is an element strictly between 𝑎 and 𝑏, in which case 𝑎 and 𝑏 are placed in different subarrays and never
compared with each other.

0 4 6 15 37 52 70 86 99
1 2 3 4 5 6 7 8 9

𝑖 𝑗

𝑎 𝑏

Therefore, E[𝑋𝑖𝑗] is the probability that the first pivot whose rank is between 𝑖 and 𝑗 (inclusive) has rank either 𝑖 or
𝑗. There are 𝑗 − 𝑖 + 1 elements in this range. Each pivot is chosen uniformly at random from the subarray input to
Partition, and as argued above, when the first pivot from this range is selected, the entire range is part of the subarray.
So, given that the pivot is in the range, it is uniformly random over the range, i.e., it is equally likely to be any of the
𝑗− 𝑖+1 elements in the range. (This statement can be formalized using conditional probability.) Because exactly two
of these possible choices make 𝑋𝑖𝑗 = 1, we have that

E[𝑋𝑖𝑗] = Pr[𝑋𝑖𝑗 = 1] =
2

𝑗 − 𝑖+ 1
.

21.3. Quick Sort 221

Foundations of Computer Science, Release 0.5

Resuming from what we showed above,

E[𝑋] =

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

E[𝑋𝑖𝑗]

=

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

2

𝑗 − 𝑖+ 1

= 2

𝑛−1∑︁
𝑖=1

𝑛−𝑖+1∑︁
𝑡=2

1

𝑡
.

The quantity
∑︀𝑘

𝑡=2 1/𝑡 is part of the harmonic series74, and is known to be less than ln(𝑘). Thus,

E[𝑋] < 2

𝑛−1∑︁
𝑖=1

ln(𝑛− 𝑖+ 1) ≤ 2

𝑛−1∑︁
𝑖=1

ln(𝑛) = 2(𝑛− 1) ln(𝑛) = 𝑂(𝑛 log 𝑛) ,

which completes the proof.

Exercise 240 Although RandQuickSort runs in expected time 𝑂(𝑛 log 𝑛) on an array of 𝑛 elements, it can
potentially run in time Ω(𝑛2), due to an unlucky choice of random pivots.

Prove that for any constant 𝑐 > 0,

lim
𝑛→∞

Pr[RandQuickSort on an 𝑛-element array takes ≥ 𝑐𝑛 log2 𝑛 steps] = 0 .

That is, as the array size grows large, randomized quick sort is very unlikely to run in even Ω(𝑛 log2 𝑛) time.

Hint: This follows immediately from Theorem 239 and Markov’s inequality (Lemma 227), without needing to
understand any of the analysis of RandQuickSort.

21.4 Skip Lists

Randomness can also be used to obtain very simple data structures that provide excellent performance in expectation.
As an example, here we consider a structure called a “skip list”, which implements a dictionary abstract data type. A
dictionary is a structure that stores data as key-value pairs, and supports inserting, deleting, and finding (looking up)
data by its associated key. For example, in a database, students’ academic records might be keyed by their unique ID
numbers.

For simplicity, we focus on storing just the keys themselves, since the associated data can be attached to them using
pointers. We assume without loss of generality that keys can be ordered in some consistent way. (For example, in the
absence of a “natural” ordering, one can use lexicographic order on the string representations of the keys.)

There are many ways to implement a dictionary abstraction using a variety of underlying data structures, such as
arrays, linked lists, hash tables, and binary search trees. However, simple deterministic implementations have worst-
case running times that are linear in the number of items in the dictionary, for some or all operations. For example, if
we insert elements 1, 2, . . . , 𝑛 into a sorted linked list or non-balancing binary search tree, most of the insertions take
Θ(𝑛) time each. Similarly, finding a key takes Θ(𝑛) time in the worst case, because we may need to traverse most or
all of the list.

One common way to avoid such poor performance is to use a more advanced data structure that does some “rebalanc-
ing” operations to ensure 𝑂(log 𝑛) worst-case runtimes for all operations, regardless of which elements are inserted or

74 https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)

21.4. Skip Lists 222

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)

Foundations of Computer Science, Release 0.5

deleted. There are a variety of such structures, like AVL trees75, red-black trees76, scapegoat trees77, and so on. How-
ever, these structures can be complicated and difficult to implement correctly, and can have significant hidden constant
factors in their runtimes and memory overheads.

Here we investigate an alternative, very simple data structure called a “skip list”, which uses randomness to obtain
expected 𝑂(log 𝑛) runtimes for all dictionary operations. A skip list is essentially a linked list with multiple levels,
where each level has about half the elements of the level below it.78

Like in a subway or highway system, skip lists can be thought of as having “express lanes” that make it possible to reach
a desired element more quickly by “skipping over” many undesired elements at a time—just as a subway’s express train
can go faster by skipping past many regular stops. A skip list, however, typically has several levels of “express lanes,”
each one able to skip over more elements than the one below it. Moreover, the choice of which elements appear on
each level, and which are skipped, is made at random. This tends to keep the data structure sufficiently “balanced” to
support fast operations, in expectation.79

head

head

head

head

-7

-7 -3

1

1

1

1 4

9

9 13

17

17

17 22

∅

∅

∅

∅

The above diagram illustrates a possible state of a skip list. Every level has a sentinel “head” and a terminal null pointer;
for convenience, their values are defined to be smaller and larger (respectively) than every element. The bottom level
has all of the elements, in a sorted linked list. Every other level has some subset of the elements in the level below
it, also in a sorted linked list. In addition, each element above the bottom level also points to its duplicate in the level
below it; these downward pointers are illustrated by stacking the duplicate elements. Therefore, from any non-terminal
position in the skip list, we may go “rightward” to the next-larger element in the same level, or (when not in the bottom
level) “downward” to the same element at the next-lowest level.80

To search for an element 𝑒, we start at the sentinel head of the top level. We maintain the invariant that we are always
located at some element 𝑎 < 𝑒 in some level, and repeat the following loop:

1. Consider the successor element 𝑎′ of 𝑎 in the current level.

2. If 𝑎′ < 𝑒, move to 𝑎′ (setting 𝑎 = 𝑎′) and repeat.

3. Otherwise (i.e., 𝑎′ ≥ 𝑒), if we are not in the bottom level, move downward (to the same element 𝑎) and repeat;
else terminate the loop.

At this point, we are in the bottom level, at the largest element smaller than 𝑒. If its successor is the desired element 𝑒,
output it; otherwise, report that 𝑒 is not in the structure.

Note that as an optimization, if we ever find that 𝑎′ = 𝑒 in some level, we can immediately return it, instead of always
descending to the bottom level. However, for defining the insertion and deletion algorithms, and for the probabilistic
analysis below, it is more convenient to define the search so that it ultimately ends in the bottom level.

For example, the following diagram illustrates the search for element 0 in the above skip list. The search terminates in
failure, since in the bottom level we end up at -3, whose successor is 1.

75 https://en.wikipedia.org/wiki/AVL_tree
76 https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
77 https://en.wikipedia.org/wiki/Scapegoat_tree
78 Ratios other than 1/2 may be used instead, trading off the space and time overheads.
79 In fact, with more work it can be shown that a skip list remains sufficiently balanced with high probability, not just in expectation.
80 In a real implementation, we would keep just one copy of each element, with an array of pointers to its successors in each of the levels in which

it appears.

21.4. Skip Lists 223

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Scapegoat_tree

Foundations of Computer Science, Release 0.5

head

head

head

head

-7

-7 -3

1

1

1

1 4

9

9 13

17

17

17 22

∅

∅

∅

∅

The following diagram illustrates the successful search for element 9 (optimized to return as soon as it is found, above
the bottom level):

head

head

head

head

-7

-7 -3

1

1

1

1 4

9

9 13

17

17

17 22

∅

∅

∅

∅

To delete an element 𝑒 from the structure, we first search for it. If 𝑒 is not in the structure, there is nothing more to do.
Otherwise, the search finds 𝑒 in the bottom level, and along the way it also finds 𝑒’s predecessor in every level in which
𝑒 appears. (These are the elements at which the search moves downward.) So, we just delete 𝑒 from each of those
levels, by making each predecessor point to the corresponding successor of 𝑒 in that level. Notice that the running time
of deletion is within a constant factor of the running time of the search.

To insert an element 𝑒, we first search for 𝑒. If it is already in the structure, then there is nothing more to do. Otherwise,
the search terminates in the bottom level, at the largest element 𝑎 < 𝑒; along the way, it also finds the largest element
smaller than 𝑒 in each level.

We first insert 𝑒 as the successor of 𝑎 in the bottom level. Then, we determine at random which higher levels the
element 𝑒 will occupy, using the following loop:

1. Flip a fair coin.

2. If it comes up heads, insert 𝑒 in the next level up (as the successor of the largest element smaller than 𝑒), and
repeat.

3. Otherwise, stop.

In other words, we insert 𝑒 into one higher level for each head that comes up, until tails comes up. Note that there is no
upper limit to how many levels we might insert 𝑒 into, and we create new levels as needed.

Observe that the number of copies of the inserted element is a random variable, which equals the total number of
coin flips until tails comes up (inclusive). So, this random variable follows the geometric distribution81 with success
probability 1/2, which has expectation 2. Thus, the runtime of insertion is, in expectation, only a constant more than
the runtime of the search.

Based on the above insertion process, we can also bound the expected size (memory usage) of a skip list. If there are 𝑛
distinct elements, then by linearity of expectation on the number of copies of each element, the expected total number
of copies is 2𝑛. So, the expected total memory usage is 𝑂(𝑛).

Finally, based on what we have already seen, to determine the expected runtime of any of the operations (insert, delete,
search), it just remains to analyze the expected runtime of a search. We have the following theorem.

81 https://en.wikipedia.org/wiki/Geometric_distribution

21.4. Skip Lists 224

https://en.wikipedia.org/wiki/Geometric_distribution

Foundations of Computer Science, Release 0.5

Theorem 241 Assume that all the operations (insert, delete, search) performed on a skip list are independent of
the internal random choices made during insertions. Then in a skip list with 𝑛 distinct elements, the expected
running time of a search is 𝑂(log 𝑛).

Before proving the theorem, we discuss the meaning and importance of the assumption, that the sequence of operations
is independent of the internal random choices. Without this assumption, a skip list may have very poor performance.
For example, if an adversarial user is able to learn which elements appear above the bottom level, then the user could
just delete all such elements from the structure. This makes the skip list just an ordinary linked list, with its associated
Θ(𝑛) runtimes. But notice that in this scenario, the sequence of operations depends on the skip list’s internal random
choices, because the deleted elements are exactly those that are randomly promoted above the bottom level. By contrast,
under the independence assumption, we can treat every element as if it has just been inserted and promoted at random
according to the above process.

To prove the theorem, we first show the following useful lemma.

Lemma 242 Under the independence assumption from Theorem 241, in a skip list with 𝑛 distinct elements, the
expected height (i.e., number of levels above the bottom level) is less than log2 𝑛+ 2.

Proof 243 We first analyze the expected number of elements on each level, and use this to determine the expected
height of the structure.

Define 𝑋𝑖𝑗 to be the indicator random variable that indicates whether the 𝑗th element appears on level 𝑖, where
𝑖 = 0 corresponds to the bottom level. Then by the insertion rule and the independence assumption,

Pr[𝑋𝑖𝑗 = 1] = 1/2𝑖 .

This is because an element appears on level 𝑖 if at least 𝑖 heads come up when inserting it, and the coin flips are
fair and independent. Thus, E[𝑋𝑖𝑗] = Pr[𝑋𝑖𝑗 = 1] = 1/2𝑖.

Now define random variable 𝑛𝑖 to be the number of (non-sentinel) elements on level 𝑖; this is just the sum of
the indicators 𝑋𝑖𝑗 . So, by linearity of expectation and the formula for geometric series, the expected number of
elements on level 𝑖 is

E[𝑛𝑖] = E
[︁ 𝑛∑︁
𝑗=1

𝑋𝑖𝑗

]︁
=

𝑛∑︁
𝑗=1

E[𝑋𝑖𝑗] =

𝑛∑︁
𝑗=1

1

2𝑖
=

𝑛

2𝑖
.

(For example, the expected number of elements on level 1 is 𝑛/2, on level 2 is 𝑛/4, etc.)

Now, we analyze the expected height of the structure, i.e., the number of levels above the bottom one that have at
least one element. For intuition, the expected number of elements on level 𝑖 is less than 1 when

E[𝑛𝑖] =
𝑛

2𝑖
< 1 ⇐⇒ 2𝑖 > 𝑛 ⇐⇒ 𝑖 > log2 𝑛 ,

so we should expect roughly ℓ(𝑛) = log2 𝑛 levels.

To show this properly, define 𝐻𝑖 to be the indicator random variable that indicates whether level 𝑖 has at least one
element, i.e., whether 𝑛𝑖 ≥ 1. Because 𝑛𝑖 is non-negative, by Markov’s inequality and the fact that 𝑛 = 2ℓ(𝑛),

E[𝐻𝑖] = Pr[𝑛𝑖 ≥ 1] ≤ E[𝑛𝑖]/1 =
𝑛

2𝑖
=

1

2𝑖−ℓ(𝑛)
.

Notice that this upper bound on E[𝐻𝑖] is nontrivial only for 𝑖 > ℓ(𝑛), because the expectation of any indicator
random variable is at most 1. For 𝑖 ≤ ℓ(𝑛) we have the trivial but tighter bound E[𝐻𝑖] ≤ 1.

21.4. Skip Lists 225

Foundations of Computer Science, Release 0.5

Now, the total height 𝐻 of the skip list is

𝐻 =

∞∑︁
𝑖=1

𝐻𝑖 ,

so by linearity of expectation, the above bounds on E[𝐻𝑖], and the formula for a geometric series, the expected
height is

E[𝐻] = E
[︁ ∞∑︁
𝑖=1

𝐻𝑖

]︁
=

∞∑︁
𝑖=1

E[𝐻𝑖]

=
∑︁

1≤𝑖≤ℓ(𝑛)

E[𝐻𝑖] +
∑︁

𝑖>ℓ(𝑛)

E[𝐻𝑖]

≤
∑︁

1≤𝑖≤ℓ(𝑛)

1 +
∑︁

𝑖>ℓ(𝑛)

1

2𝑖−ℓ(𝑛)

< ℓ(𝑛) +

∞∑︁
𝑘=0

1

2𝑘

= log2 𝑛+ 2 .

Now we can prove Theorem 241, which says that the expected running time of a search in a skip list of 𝑛 distinct
elements is 𝑂(log 𝑛).

Proof 244 The running time of the search for an element 𝑒 is proportional to the total number of downward and
rightward moves during the search, starting from the topmost sentinel head. The number of downward moves is
exactly the height of the structure, whose expectation we analyzed above in Lemma 242. So, it remains to analyze
the expected number of rightward moves. The simplest way to do this rigorously is to consider the search path in
reverse.

The end of the search path is the largest value 𝑎 < 𝑒 in the bottom level, and hence in the entire structure as well.
Suppose that this 𝑎 is not the sentinel head, otherwise there is no rightward move in the entire search. The search
moved rightward to this 𝑎 only if 𝑎 is not present in the next level up. Indeed, if 𝑎 were in the next level up, then
the prior step of the search must have been downward from that copy of 𝑎, because the search reaches the largest
value less than 𝑒 on each level.

By definition of the insertion process (and the independence assumption), with probability 1/2, the first coin toss
when 𝑎 was inserted came up tails, in which case 𝑎 is not present in the next level up, and so the prior step was
rightward. In this case, the exact same reasoning applies to the step prior to that one, and so on, until we reach an
element that either is in the next level up or is the sentinel head. So, in the bottom level, the number of rightward
moves 𝑅0 is the number of independent fair coin tosses (out of ≤ 𝑛 tosses) that come up tails before the first
heads comes up. This is bounded by one less than a geometric random variable with success probability 1/2, so
E[𝑅0] < 1.

The exact same reasoning applies to the number of rightward moves on every level. That is, the last value visited
on level 𝑖 is the largest value 𝑎 < 𝑒 on that level. If 𝑎 is not the sentinel head, then the prior step was rightward
only if 𝑎 is not in the next level up, which holds with probability 1/2 by definition of the insertion process, and
so on. So, defining random variable 𝑅𝑖 to be the number of rightward moves on level 𝑖, we have that E[𝑅𝑖] < 1
for all 𝑖.

Separately, the number of rightward moves on level 𝑖 cannot exceed the total number of (non-sentinel) elements
𝑛𝑖 on level 𝑖. So, E[𝑅𝑖] ≤ E[𝑛𝑖] = 𝑛/2𝑖, as shown in the proof of Lemma 242 above. This bound on E[𝑅𝑖] is

21.4. Skip Lists 226

Foundations of Computer Science, Release 0.5

tighter than the one obtained above when 𝑛/2𝑖 < 1, or equivalently, when 𝑖 > ℓ(𝑛) = log2(𝑛).

Finally, let 𝐻 be the height of the structure, which is the number of downward moves in the search, and let 𝑅 be
the total number of rightward moves, which is the sum of all the 𝑅𝑖 for 𝑖 ≥ 0. Then by linearity of expectation,
the above bounds on E[𝑅𝑖], and Lemma 242 (and proceeding similarly to its proof), the expected total number of
moves in the search is

E[𝐻 +𝑅] = E[𝐻] + E
[︁ ∞∑︁
𝑖=0

𝑅𝑖

]︁
= E[𝐻] +

∞∑︁
𝑖=0

E[𝑅𝑖]

= E[𝐻] +
∑︁

0≤𝑖≤ℓ(𝑛)

E[𝑅𝑖] +
∑︁

𝑖>ℓ(𝑛)

E[𝑅𝑖]

< E[𝐻] +
∑︁

0≤𝑖≤ℓ(𝑛)

1 +
∑︁

𝑖>ℓ(𝑛)

𝑛

2𝑖

< E[𝐻] + (ℓ(𝑛) + 1) + 2

< 2 log2 𝑛+ 5 .

Therefore, the expected running time of the search is 𝑂(log 𝑛), as claimed. □

21.4. Skip Lists 227

CHAPTER

TWENTYTWO

MONTE CARLO METHODS AND CONCENTRATION BOUNDS

Some algorithms rely on repeated trials to compute an approximation of a result. Such algorithms are called Monte
Carlo methods, which are distinct from Monte Carlo algorithms (page 284) – a Monte Carlo method does repeated
sampling of a probability distribution, while a Monte Carlo algorithm is an algorithm that may produce the wrong
result within some bounded probability. The former are commonly approximation algorithms for estimating a quantity,
while the latter are exact algorithms that sometimes produce the wrong result. As we will see (page 287), there is a
connection: repeated sampling (the strategy of a Monte Carlo method) can be used to amplify the probability of getting
the correct result from a Monte Carlo algorithm.

As an example of a Monte Carlo method, we consider an algorithm for estimating the value of 𝜋, the area of a unit
circle (a circle with a radius of one). If such a circle is located in the plane, centered at the origin, its top-right quadrant
is as follows:

This quadrant falls within the square interval between (0, 0) and (1, 1). The area of the quadrant is 𝜋/4, while the area
of the interval is 1. Thus, if we choose a random point in this interval, the probability that it lies within the quadrant of
the circle is 𝜋/482. This motivates the following algorithm for estimating the value of 𝜋:

function EstimatePi(𝑛)
count = 0
for 𝑖 = 1 to 𝑛 do

𝑥, 𝑦 = values in [0, 1] chosen uniformly and independently at random
if 𝑥2 + 𝑦2 ≤ 1 then

count = count + 1

return 4 · count/𝑛

The algorithm randomly chooses points between (0, 0) and (1, 1), counting how many of them fall within the unit circle,
which is when the point’s distance from the origin is at most one. We expect this number to be 𝜋/4 of the samples, so
the algorithm returns four times the ratio of the points that fell within the circle as an estimate of 𝜋.

82 This follows from applying the tools of continuous probability, which we will not discuss in any detail in this text.

228

Foundations of Computer Science, Release 0.5

We formally show that the algorithm returns the value of 𝜋 in expectation. Let 𝑋 be a random variable corresponding
to the value returned, and let 𝑌𝑖 be an indicator random variable that is 1 if the 𝑖th point falls within the unit circle. As
argued previously, we have:

Pr[𝑌𝑖 = 1] = 𝜋/4 .

We also have that

𝑋 = 4/𝑛 · (𝑌1 + · · ·+ 𝑌𝑛) .

This leads to the following expected value for 𝑋:

E[𝑋] = 4/𝑛 · (E[𝑌1] + E[𝑌2] + · · ·+ E[𝑌𝑛])

= 4/𝑛 · (Pr[𝑌1 = 1] + Pr[𝑌2 = 1] + · · ·+ Pr[𝑌𝑛 = 1])

= 4/𝑛 · (𝜋/4 + 𝜋/4 + · · ·+ 𝜋/4)

= 𝜋 .

The expected value of the algorithm’s output is indeed 𝜋.

When estimating 𝜋, how likely are we to actually get a result that is close to the expected value? While we can apply
Markov’s inequality, the bound we get is very loose, and it does not give us any information about how the number
of samples affects the quality of the estimate. The law of large numbers states that the actual result converges to
the expected value as the number of samples 𝑛 increases. But how fast does it converge? There are many types of
concentration bounds that allow us to reason about the deviation of a random variable from its expectation; Markov’s
inequality is just the simplest one. Chebyshev’s inequality (page 229) is another simple bound that makes use of more
information about a random variable, namely its variance. Chernoff bounds are yet another tool. There are multiple
variants of Chernoff bounds, including the multiplicative form (page 274) and the additive Hoeffding bounds (page 234).

22.1 Variance and Chebyshev’s Inequality

The expectation of a random variable gives us one piece of information about its probability distribution, but there are
many aspects of the distribution that it does not capture. For instance, the following illustrates three random variables
that have different distributions but the same expected value of 0.5:

0
0.2
0.4
0.6
0.8
1

1.2

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty

Value of X

0
0.1
0.2
0.3
0.4
0.5
0.6

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty

Value of Y

0
0.05
0.1

0.15
0.2

0.25
0.3

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty

Value of Z

Beyond the expectation, the next most important aspect of a probability distribution is its “spread”83. The variance of
a random variable encapsulates this information.

83 There are higher-order “moments”Page 229, 84 of a distribution as well, such as skewness85 and kurtosis86. However, expectation and variance
(or standard deviation, its square root) are the most commonly used.

84 https://en.wikipedia.org/wiki/Standardized_moment
85 https://en.wikipedia.org/wiki/Skewness
86 https://en.wikipedia.org/wiki/Kurtosis

22.1. Variance and Chebyshev’s Inequality 229

https://en.wikipedia.org/wiki/Standardized_moment
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis

Foundations of Computer Science, Release 0.5

Definition 245 (Variance) Suppose 𝑋 is a random variable with expectation E[𝑋]. Then the variance of 𝑋 is
defined as

Var(𝑋) = E[(𝑋 − E[𝑋])2] ,

or equivalently,

Var(𝑋) = E[𝑋2]− E[𝑋]2 .

The second definition follows from the first due to linearity of expectation:

Var(𝑋) = E[(𝑋 − E[𝑋])2]

= E[𝑋2 − 2E[𝑋] ·𝑋 + E[𝑋]2]

= E[𝑋2]− 2E[E[𝑋] ·𝑋] + E[E[𝑋]2]

= E[𝑋2]− 2E[𝑋] · E[𝑋] + E[𝑋]2

= E[𝑋2]− 2E[𝑋]2 + E[𝑋]2

= E[𝑋2]− E[𝑋]2 .

In the fourth step, we used the fact that E[𝑋] is a constant to pull it out of the outer expectation: by linearity of
expectation, E[𝑐𝑌] = 𝑐E[𝑌] for any constant 𝑐.

The variance tells us the average square of the distance of a random variable from its expectation. Taking the square
root of the variance gives us an approximate measure of the distance itself; this is called the standard deviation, and it
is often denoted by the symbol 𝜎:

𝜎(𝑋) =
√︀
Var(𝑋) .

Example 246 Suppose that random variable 𝑋 has the distribution

𝑋 = 0.5 with probability 1

and 𝑌 has the distribution

𝑌 =

{︃
0 with probability 1/2

1 with probability 1/2.

Both 𝑋 and 𝑌 have expectations 0.5. We calculate their variances. The distributions of 𝑋2 and 𝑌 2 are as follows:

𝑋2 = 0.25 with probability 1

𝑌 2 =

{︃
0 with probability 1/2

1 with probability 1/2.

Therefore,

Var(𝑋) = E[𝑋2]− E[𝑋]2 = 0.25− 0.52 = 0

Var(𝑌) = E[𝑌 2]− E[𝑌]2 = 0.5− 0.52 = 0.25 .

We see that while 𝑋 and 𝑌 have the same expectation, their variances differ. This quantifies the fact that 𝑋 has
a certain value with certainty, whereas 𝑌 can take on multiple values, so 𝑌 has larger variance.

22.1. Variance and Chebyshev’s Inequality 230

Foundations of Computer Science, Release 0.5

Example 247 Let 𝑋 be an indicator random variable with probability 𝑝 of being 1:

𝑋 =

{︃
0 with probability 1− 𝑝

1 with probability 𝑝.

Then E[𝑋] = Pr[𝑋 = 1] = 𝑝. Observe that 𝑋2 = 𝑋 in all cases, so E[𝑋2] = E[𝑋] = 𝑝. Thus, the variance of
𝑋 is

Var(𝑋) = E[𝑋2]− E[𝑋]2

= 𝑝− 𝑝2

= 𝑝(1− 𝑝) .

As a more complex example, define 𝑋 to be the number of heads over 𝑛 tosses of a biased coin with probability 𝑝 of
coming up heads. In Example 234 we calculated that E[𝑋] = 𝑝𝑛. Defining 𝑋𝑖 to be the indicator random variable for
whether the 𝑖th toss comes up heads, we can infer from Example 247 that Var(𝑋𝑖) = 𝑝(1−𝑝). What can we say about
the variance Var(𝑋) = Var

(︀∑︀
𝑖 𝑋𝑖

)︀
of 𝑋 itself?

For expectation, we know from Theorem 231 that linearity of expectation holds for any random variables, even arbitrar-
ily correlated ones. For variance, this is not the case. As an example, for a random variable 𝑌 , define𝑍 = 𝑌 +𝑌 = 2𝑌 .
It is not the case that Var(𝑍) = 2Var(𝑌); in fact, Var(𝑍) = 4Var(𝑌).

Theorem 248 Let 𝑋 be a random variable. Then Var(𝑐𝑋) = 𝑐2 ·Var(𝑋) for any constant 𝑐.

Proof 249 By definition of variance,

Var(𝑐𝑋) = E[(𝑐𝑋)2]− E[𝑐𝑋]2

= E[𝑐2𝑋2]− (𝑐E[𝑋])2

= 𝑐2 · E[𝑋2]− 𝑐2 · E[𝑋]2

= 𝑐2 · (E[𝑋2]− E[𝑋]2)

= 𝑐2 ·Var(𝑋) .

In the second and third steps, we applied linearity of expectation to pull the constants 𝑐 and 𝑐2 out of the expec-
tations. □

For a sum of random variables, the variances sum if the random variables are independent; in fact, pairwise indepen-
dence suffices for this. To establish this, we first demonstrate that the expectation of the product of independent random
variables is the product of their expectations.

Lemma 250 Let 𝑋 and 𝑌 be independent random variables. Then

E[𝑋𝑌] = E[𝑋] · E[𝑌] .

Proof 251 By definition of expectation,

E[𝑋𝑌] =
∑︁
𝑥,𝑦

𝑥𝑦 · Pr[𝑋 = 𝑥 ∧ 𝑌 = 𝑦]

=
∑︁
𝑥

∑︁
𝑦

𝑥𝑦 · Pr[𝑋 = 𝑥] · Pr[𝑌 = 𝑦]

=
(︁∑︁

𝑥

𝑥 · Pr[𝑋 = 𝑥]
)︁(︁∑︁

𝑦

𝑦 · Pr[𝑌 = 𝑦]
)︁

= E[𝑋] · E[𝑌] .

22.1. Variance and Chebyshev’s Inequality 231

Foundations of Computer Science, Release 0.5

In the second step, we used the fact that 𝑋 and 𝑌 are independent, so that Pr[𝑋 = 𝑥 ∧ 𝑌 = 𝑦] = Pr[𝑋 =
𝑥] · Pr[𝑌 = 𝑦]. □

By induction, we conclude that

E
[︁∏︁

𝑖

𝑋𝑖

]︁
=
∏︁
𝑖

E[𝑋𝑖]

for mutually independent random variables 𝑋𝑖.

We now consider the variance of the sum of independent random variables.

Theorem 252 Let 𝑋 and 𝑌 be independent random variables. Then Var(𝑋 + 𝑌) = Var(𝑋) + Var(𝑌).

Proof 253 By definition of variance, linearity of expectation, and Lemma 250,

Var(𝑋 + 𝑌) = E[(𝑋 + 𝑌)2]− E[𝑋 + 𝑌]2

= E[𝑋2 + 2𝑋𝑌 + 𝑌 2]− (E[𝑋] + E[𝑌])2

= E[𝑋2] + 2E[𝑋𝑌] + E[𝑌 2]− (E[𝑋]2 + 2E[𝑋] · E[𝑌] + E[𝑌]2)

= E[𝑋2] + 2E[𝑋] · E[𝑌] + E[𝑌 2]− (E[𝑋]2 + 2E[𝑋]E[𝑌] + E[𝑌]2)

= E[𝑋2]− E[𝑋]2 + E[𝑌 2]− E[𝑌]2

= Var(𝑋) + Var(𝑌) .

By induction, we conclude that

Var
(︁∑︁

𝑖

𝑋𝑖

)︁
=
∑︁
𝑖

Var(𝑋𝑖)

for mutually independent random variables 𝑋𝑖. (In fact, a close inspection of the proof reveals that pairwise indepen-
dence suffices.)

Thus, letting 𝑋 be the number of heads over 𝑛 tosses of a biased coin with probability 𝑝 of coming up heads, we have
that

Var(𝑋) = Var
(︁∑︁

𝑖

𝑋𝑖

)︁
=
∑︁
𝑖

Var(𝑋𝑖)

=
∑︁
𝑖

𝑝(1− 𝑝)

= 𝑝(1− 𝑝)𝑛 .

Chebyshev’s inequality bounds the probability that a random variable differs from its expectation by some threshold.

Theorem 254 (Chebyshev’s Inequality) Let 𝑋 be a random variable and 𝑎 > 0. Then

Pr
[︀
|𝑋 − E[𝑋]| ≥ 𝑎

]︀
≤ Var(𝑋)

𝑎2
.

Proof 255 We apply Markov’s inequality (page 211) to the random variable 𝑌 = (𝑋 − E[𝑋])2, which has
expectation E[𝑌] = Var(𝑋) by definition. Observe that because 𝑌 is the square of a real number, it is non-
negative, so Markov’s inequality applies to it. Furthermore, because 𝑎 is positive, 𝑌 = (𝑋 −E[𝑋])2 ≥ 𝑎2 holds

22.1. Variance and Chebyshev’s Inequality 232

Foundations of Computer Science, Release 0.5

if and only if |𝑋 − E[𝑋]| ≥ 𝑎. Thus,

Pr
[︀
|𝑋 − E[𝑋]| ≥ 𝑎

]︀
= Pr[𝑌 ≥ 𝑎2]

≤ E[𝑌]

𝑎2

=
Var(𝑋)

𝑎2
.

Example 256 Suppose we toss a fair coin 𝑛 times. We use Chebyshev’s inequality to calculate an upper bound
on the probability of getting ≤ 49% or ≥ 51% heads.

Let 𝑋 be the number of heads. We previously showed that E[𝑋] = 𝑛/2, and Var(𝑋) = 𝑛/4. Then

Pr
[︀
|𝑋 − 𝑛/2| ≥ 𝑛/100

]︀
≤ Var(𝑋)

(𝑛/100)2

= 10000 · 𝑛/4
𝑛2

=
2500

𝑛
.

For example, for 10,000 tosses, the probability of deviating from the expectation by 1% is at most 1/4, while for
1,000,000 tosses, it is at most 1/400.

In the above example, the random variable 𝑋 = 𝑋1 + · · · + 𝑋𝑛 is the sum of (mutually) independent, identically
distributed (i.i.d.) random variables𝑋𝑖. In such a scenario, it is often more convenient to reason about the “normalized”
value 𝑋/𝑛 rather than 𝑋 itself, since the expectation of 𝑋/𝑛 is independent of 𝑛: by linearity of expectation, E[𝑋] =
𝑛 ·E[𝑋𝑖], whereas E[𝑋/𝑛] = E[𝑋]/𝑛 = E[𝑋𝑖]. The following is an alternative formulation of Chebyshev’s inequality
for this case.

Corollary 257 Let𝑋 = 𝑋1+· · ·+𝑋𝑛 be the sum of 𝑛 ≥ 1 independent, identically distributed random variables
𝑋𝑖. Let 𝜀 > 0 be a deviation from the expectation E[𝑋/𝑛] = E[𝑋𝑖]. Then

Pr
[︀
|𝑋/𝑛− E[𝑋𝑖]| ≥ 𝜀

]︀
≤ Var(𝑋𝑖)

𝜀2𝑛
.

Proof 258 The event |𝑋/𝑛− E[𝑋𝑖]| ≥ 𝜀 is equivalent to the event |𝑋 − E[𝑋]| ≥ 𝜀𝑛, by multiplying both sides
by 𝑛. By the standard form of Chebyshev’s inequality, we have

Pr
[︀
|𝑋/𝑛− E[𝑋𝑖]| ≥ 𝜀

]︀
= Pr

[︀
|𝑋 − E[𝑋]| ≥ 𝜀𝑛

]︀
≤ Var(𝑋)

𝜀2𝑛2

=
𝑛 ·Var(𝑋𝑖)

𝜀2𝑛2

=
Var(𝑋𝑖)

𝜀2𝑛
.

In the second-to-last step, we used Theorem 252 to deduce that Var(𝑋) = 𝑛 · Var(𝑋𝑖), since the 𝑋𝑖 are inde-
pendent. □

We can redo Example 256 using Corollary 257 to obtain the same bounds.

In conclusion, Chebyshev’s inequality tells us that for 𝑛 independent coin tosses, the probability of deviating by at least
(say) 1% from the expected number of heads decreases at least linearly in 𝑛. In fact, the probability actually decreases
much faster than this! Using multiplicative Chernoff bounds (page 274) or Hoeffding’s inequality (page 234) from the
following sections, we can show that the probability decreases exponentially in the number of tosses.

22.1. Variance and Chebyshev’s Inequality 233

Foundations of Computer Science, Release 0.5

22.2 Hoeffding’s Inequality

Hoeffding’s inequality, also called Chernoff-Hoeffding bounds, is a set of concentration bounds that can give tighter
results than Markov’s inequality, Chebyshev’s inequality, or other forms of Chernoff bounds. For simplicity, we restrict
ourselves to the special case of independent indicator random variables having expectation

Pr[𝑋𝑖 = 1] = 𝑝𝑖

for each indicator 𝑋𝑖.87

Let 𝑝 denote the expectation of 𝑋/𝑛. Then by linearity of expectation,

𝑝 = E[𝑋/𝑛] =
∑︁
𝑖

E[𝑋𝑖]/𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

𝑝𝑖 .

That is, the expectation of 𝑋/𝑛 is just the average of the 𝑝𝑖.

Hoeffding’s inequality bounds the probability that 𝑋/𝑛 deviates from its expectation by a threshold of interest.

Theorem 259 (Hoeffding’s Inequality) Let 𝑋 = 𝑋1 + · · · +𝑋𝑛 be the sum of independent indicator random
variables 𝑋𝑖 with E[𝑋𝑖] = 𝑝𝑖, and let

𝑝 = E[𝑋/𝑛] =
1

𝑛

𝑛∑︁
𝑖=1

𝑝𝑖 .

Let 𝜀 > 0 be a deviation from the expectation. Then we have the “upper tail” bound

Pr[𝑋/𝑛 ≥ 𝑝+ 𝜀] ≤ 𝑒−2𝜀2𝑛 ,

and the same holds for the “lower tail” Pr[𝑋/𝑛 ≤ 𝑝− 𝜀]. Combining these via the union bound,

Pr[|𝑋/𝑛− 𝑝| ≥ 𝜀] ≤ 2𝑒−2𝜀2𝑛 .

We again consider the example of tossing a fair coin 𝑛 times. Let 𝐻 be the total number of heads that come up, and
let 𝐻𝑖 be the indicator random variable that indicates whether the 𝑖th toss comes up heads. We have that E[𝐻𝑖] =
Pr[𝐻𝑖 = 1] = 1/2, and E[𝐻/𝑛] = E[𝐻𝑖] = 1/2 for any number of tosses 𝑛.

What is a bound on the probability that in ten tosses, at least six heads come up? This is a deviation of 𝜀 = 0.1 from
the (normalized) expectation of 𝑝 = 0.5, so applying the upper-tail Hoeffding’s inequality gives us:

Pr[𝐻/𝑛 ≥ 𝑝+ 𝜀] = Pr[𝐻/𝑛 ≥ 0.5 + 0.1] ≤ 𝑒−2·(0.1)2·10 ≈ 0.980210 ≈ 0.82 .

Now, what is a bound on the probability that in 100 tosses, at least 60 heads come up? This is again the same deviation
𝜀 = 0.1 from the expectation of 𝑝 = 0.5; only the number of trials is different. Applying the upper tail again, we get

Pr[𝐻/𝑛 ≥ 𝑝+ 𝜀] ≤ 𝑒−2·(0.1)2·100 ≈ 0.9802100 ≈ 0.14 .

This is a significantly tighter bound than what we would get from Chebyshev’s inequality (Theorem 254); see Example
256 for a comparison. It is also tighter than what we would get from the multiplicative Chernoff bound (page 274).

Example 260 Suppose we have a coin that is biased by probability 𝜀 towards either heads or tails, but we don’t
know which one. In other words, either:

• Pr[heads] = 1
2 + 𝜀 and Pr[tails] = 1

2 − 𝜀, or

• Pr[heads] = 1
2 − 𝜀 and Pr[tails] = 1

2 + 𝜀

87 See the appendix (page 306) for the general case of Hoeffding’s inequality, as well as proofs of the special (page 302) and general (page 306)
cases.

22.2. Hoeffding’s Inequality 234

Foundations of Computer Science, Release 0.5

To determine in which direction the coin is biased, we toss the coin 𝑛 times. If the results include at least 𝑛/2
heads, we assume the coin is biased towards heads, otherwise we assume it is biased towards tails. How many
tosses should we do to guarantee our answer is correct with probability at least 1− 𝛿?

Let 𝑋 be the number of heads, and let 𝑋𝑖 be an indicator that is 1 if the 𝑖th toss is heads, 0 if it is tails. Then
𝑋 = 𝑋1 + · · ·+𝑋𝑛 is the sum of independent indicator random variables with E[𝑋𝑖] equal to either 1

2 + 𝜀 or to
1
2 − 𝜀. We analyze the two cases individually.

• Case 1: The coin is biased towards heads. Then E[𝑋𝑖] = 𝑝 = 1
2 + 𝜀. Our guess is erroneous when:

𝑋 <
𝑛

2
1

𝑛
𝑋 <

1

2

= (
1

2
+ 𝜀)− 𝜀

= 𝑝− 𝜀

By the lower-tail Hoeffding’s inequality, we have

Pr

[︂
1

𝑛
𝑋 < 𝑝− 𝜀

]︂
≤ Pr

[︂
1

𝑛
𝑋 ≤ 𝑝− 𝜀

]︂
≤ 𝑒−2𝜀2𝑛

In the first step, we used the fact that Pr[𝑌 ≤ 𝑎] = Pr[𝑌 < 𝑎] + Pr[𝑌 = 𝑎] ≥ Pr[𝑌 < 𝑎] for a random
variable 𝑌 and any value 𝑎.

• Case 2: The coin is biased towards tails. Then E[𝑋𝑖] = 𝑝 = 1
2 − 𝜀. Our guess is erroneous when:

𝑋 ≥ 𝑛

2
1

𝑛
𝑋 ≥ 1

2

= (
1

2
− 𝜀) + 𝜀

= 𝑝+ 𝜀

By the upper-tail Hoeffding’s inequality, we have

Pr

[︂
1

𝑛
𝑋 ≥ 𝑝+ 𝜀

]︂
≤ 𝑒−2𝜀2𝑛

In either case, the probability of error after 𝑛 tosses is upper-bounded by 𝑒−2𝜀2𝑛. We want this probability to be
no more than 𝛿:

𝑒−2𝜀2𝑛 ≤ 𝛿

1/𝛿 ≤ 𝑒2𝜀
2𝑛

ln(1/𝛿) ≤ 2𝜀2𝑛

ln(1/𝛿)

2𝜀2
≤ 𝑛

22.2. Hoeffding’s Inequality 235

Foundations of Computer Science, Release 0.5

If 𝜀 = 0.01 (i.e. the coin is biased towards heads or tails by 1%) and 𝛿 = 0.0001 (we want to be correct at least
99.99% of the time), then

𝑛 ≥ ln(1/0.0001)

2 · 0.012 ≈ 46502

tosses suffice.

Exercise 261 Suppose we have a coin that is either fair, or is biased by probability 𝜀 towards heads, but we don’t
know which is the case. In other words, either:

• Pr[heads] = 1
2 and Pr[tails] = 1

2 , or

• Pr[heads] = 1
2 + 𝜀 and Pr[tails] = 1

2 − 𝜀

We toss the coin 𝑛 times and count the number of heads 𝑋 .

a. For what values of 𝑋 should we guess the coin is fair, and for what values that it is biased towards heads?

b. How many tosses should we do to guarantee our answer is correct with probability at least 1− 𝛿?

c. How many tosses should we do for 𝜀 = 0.01 and 𝛿 = 0.0001? How does this compare to the situation in
Example 260 with 𝜀 = 0.005 and 𝛿 = 0.0001?

22.3 Polling

Rather than applying concentration bounds to compute the probability of a deviation for a specific sample size, we
often wish to determine how many samples we need to be within a particular deviation with high confidence. One
application of this is big data, where we have vast datasets that are too large to examine in their entirety, so we sample
the data instead to estimate the quantities of interest. Similar to this is polling – outside of elections themselves, we
typically do not have the resources to ask the entire population for their opinions, so we need to sample the populace
to estimate the support for a particular candidate or political position. In both applications, we need to determine how
many samples are needed to obtain a good estimate.

In general, a poll estimates the fraction of the population that supports a particular candidate by asking 𝑛 randomly
chosen people whether they support that candidate. Let 𝑋 be a random variable corresponding to the number of people
who answer this question in the affirmative. Then 𝑋/𝑛 is an estimate of the level of support in the full population.

A typical poll has both a confidence level and a margin of error – the latter corresponds to the deviation from the
true fraction 𝑝 of people who support the candidate, and the former corresponds to a bound on the probability that the
estimate is within that deviation. For example, a 95% confidence level and a margin of error of ±2% requires that

Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
≤ 0.02

]︂
≥ 0.95

More generally, for a confidence level 1− 𝛾 and margin of error 𝜀, we require

Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
≤ 𝜀

]︂
≥ 1− 𝛾

or equivalently

Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
> 𝜀

]︂
< 𝛾

Formally, we define indicator variables 𝑋𝑖 as

𝑋𝑖 =

{︃
1 if person 𝑖 supports the candidate
0 otherwise.

22.3. Polling 236

Foundations of Computer Science, Release 0.5

for each person 𝑖 in the set that we poll. Then 𝑋 = 𝑋1 + · · ·+𝑋𝑛 is the sum of independent indicator variables, with

𝜇 = E[𝑋] =
∑︁
𝑖

E[𝑋𝑖] = 𝑛𝑝

22.3.1 Analysis with Hoeffding’s Inequality

Applying Hoeffding’s inequality to polling, the combined inequality gives us

Pr

[︂⃒⃒⃒⃒
1

𝑛
𝑋 − 𝑝

⃒⃒⃒⃒
≥ 𝜀

]︂
≤ 2𝑒−2𝜀2𝑛

For a 95% confidence level and a margin of error of ±2%, we require that

Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
≤ 0.02

]︂
≥ 0.95

However, this isn’t quite in the form where we can apply Hoeffding’s inequality, so we need to do some manipulation
first. We have:

Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
≤ 0.02

]︂
= 1− Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
> 0.02

]︂
≥ 1− Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
≥ 0.02

]︂
Hoeffding’s inequality gives us:

Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
≥ 0.02

]︂
≤ 2𝑒−2·0.022·𝑛

Substituting this into the above, we get:

Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
≤ 0.02

]︂
≥ 1− 2𝑒−2·0.022·𝑛

We want this to be at least 0.95:

1− 2𝑒−2·0.022·𝑛 ≥ 0.95

2𝑒−2·0.022·𝑛 ≤ 0.05

𝑒2·0.02
2·𝑛 ≥ 40

2 · 0.022 · 𝑛 ≥ ln 40

𝑛 ≥ ln 40

2 · 0.022
≈ 4611.1

Thus, we obtain the given confidence level and margin of error by polling at least 4612 people. Observe that this does
not depend on the total population size!

For an arbitrary margin of error ±𝜀, we obtain:

Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
≤ 𝜀

]︂
= 1− Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
> 𝜀

]︂
≥ 1− Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
≥ 𝜀

]︂
≥ 1− 2𝑒−2𝜀2𝑛

22.3. Polling 237

Foundations of Computer Science, Release 0.5

To achieve an arbitrary confidence level 1− 𝛾, we need:

1− 2𝑒−2𝜀2𝑛 ≥ 1− 𝛾

2𝑒−2𝜀2𝑛 ≤ 𝛾

𝑒2𝜀
2𝑛 ≥ 2

𝛾

2𝜀2𝑛 ≥ ln(
2

𝛾
)

𝑛 ≥ 1

2𝜀2
ln(

2

𝛾
)

More generally, if we wish to gauge the level of support for 𝑚 different candidates, the sampling theorem tells us that
the number of samples required is logarithmic in 𝑚.

Theorem 262 (Sampling Theorem) Suppose 𝑛 people are polled to ask which candidate they support, out of 𝑚
possible candidates. Let 𝑋(𝑗) be the number of people who state that they support candidate 𝑗, and let 𝑝𝑗 be the
true level of support for that candidate. We wish to obtain

Pr

⎡⎣⋂︁
𝑗

(

⃒⃒⃒⃒
𝑋(𝑗)

𝑛
− 𝑝𝑗

⃒⃒⃒⃒
≤ 𝜀)

⎤⎦ ≥ 1− 𝛾

In other words, we desire a confidence level 1− 𝛾 that all estimates 𝑋(𝑗)/𝑛 are within margin of error ±𝜀 of the
true values 𝑝𝑗 . We obtain this when the number of samples 𝑛 is

𝑛 ≥ 1

2𝜀2
ln(

2𝑚

𝛾
)

The sampling theorem can be derived from applying the union bound (page 206).

In conclusion, when sampling from a large dataset, the number of samples required does depend on the desired accuracy
of the estimation and the range size (i.e. number of possible answers). But it does not depend on the population size.
This makes sampling a powerful technique for dealing with big data, as long as we are willing to tolerate a small
possibility of obtaining an inaccurate estimate.

22.4 Load Balancing

Job scheduling is another application where we can exploit randomness to construct a simple, highly effective algorithm.
In this problem, we have 𝑘 servers, and there are 𝑛 jobs that need to be distributed to these servers. The goal is to
balance the load among the servers, so that no one server is overloaded. This problem is very relevant to content-
delivery networks – there may be on the order of millions or even billions of concurrent users, and each user needs to
be routed to one of only hundreds or thousands of servers. Thus, we have 𝑛 ≫ 𝑘 in such a case.

One possible algorithm is to always send a job to the most lightly loaded server. However, this requires significant
coordination – the scheduler must keep track of the load on each server, which requires extra communication, space,
and computational resources. Instead, we consider a simple, randomized algorithm that just sends each job to a random
server. The expected number of jobs on each server is 𝑛/𝑘. But how likely are we to be close to this ideal, balanced
load?

We start our analysis by defining random variables 𝑋(𝑗) corresponding to the number of jobs assigned to server 𝑗. We
would like to demonstrate that the joint probability of 𝑋(𝑗) being close to 𝑛/𝑘 for all 𝑗 is high. We first reason about
the load on an individual server. In particular, we wish to compute a bound on

Pr
[︁
𝑋(𝑗) ≥ 𝑛

𝑘
+ 𝑐
]︁

22.4. Load Balancing 238

Foundations of Computer Science, Release 0.5

for some value 𝑐 > 0, i.e. the probability that server 𝑗 is overloaded by at least 𝑐 jobs. Let 𝑋(𝑗)
𝑖 be an indicator random

variable that is 1 if job 𝑖 is sent to server 𝑗. Since the target server for job 𝑖 is chosen uniformly at random out of 𝑘
possible choices, we have

E
[︁
𝑋

(𝑗)
𝑖

]︁
= Pr

[︁
𝑋

(𝑗)
𝑖 = 1

]︁
=

1

𝑘

We also have 𝑋(𝑗) = 𝑋
(𝑗)
1 + · · ·+𝑋

(𝑗)
𝑛 , giving us

E
[︁
𝑋(𝑗)

]︁
=
∑︁
𝑖

E
[︁
𝑋

(𝑗)
𝑖

]︁
=

𝑛

𝑘

as we stated before. Then:

Pr
[︁
𝑋(𝑗) ≥ 𝑛

𝑘
+ 𝑐
]︁
= Pr

[︂
1

𝑛
𝑋(𝑗) ≥ 1

𝑘
+

𝑐

𝑛

]︂
≤ 𝑒−2(𝑐/𝑛)2𝑛

= 𝑒−2𝑐2/𝑛

by the upper-tail Hoeffding’s inequality.

Now that we have a bound on an individual server being overloaded by 𝑐 jobs, we wish to bound the probability that
there is some server that is overloaded. The complement event is that no server is overloaded, so we can equivalently
compute the joint probability that none of the servers is overloaded by 𝑐 or more jobs:

Pr
[︁
𝑋(1) <

𝑛

𝑘
+ 𝑐, . . . ,𝑋(𝑛) <

𝑛

𝑘
+ 𝑐
]︁

However, we cannot do so by simply multiplying the individual probabilities together – that only works if the proba-
bilities are independent, and in this case, they are not. In particular, if one server is overloaded, some other server must
be underloaded, so the random variables 𝑋(𝑗) are not independent.

Rather than trying to work with the complement event, we attempt to directly compute the probability that there is at
least one overloaded server:

Pr
[︁
(𝑋(1) ≥ 𝑛

𝑘
+ 𝑐) ∪ · · · ∪ (𝑋(𝑛) ≥ 𝑛

𝑘
+ 𝑐)

]︁
More succinctly, we denote this as:

Pr

⎡⎣⋃︁
𝑗

(𝑋(𝑗) ≥ 𝑛

𝑘
+ 𝑐)

⎤⎦
We have a union of events, and we want to analyze the probability of that union. We use the union bound (Lemma
212):

Pr

⎡⎣⋃︁
𝑗

(𝑋(𝑗) ≥ 𝑛

𝑘
+ 𝑐)

⎤⎦ ≤
∑︁
𝑗

Pr
[︁
𝑋(𝑗) ≥ 𝑛

𝑘
+ 𝑐
]︁

≤
∑︁
𝑗

𝑒−2𝑐2/𝑛

= 𝑘 · 𝑒−2𝑐2/𝑛

= 𝑒ln 𝑘 · 𝑒−2𝑐2/𝑛

= 𝑒ln 𝑘−2𝑐2/𝑛

22.4. Load Balancing 239

Foundations of Computer Science, Release 0.5

For 𝑐 =
√
𝑛 ln 𝑘, we get:

Pr

⎡⎣⋃︁
𝑗

(𝑋(𝑗) ≥ 𝑛

𝑘
+

√
𝑛 ln 𝑘)

⎤⎦ ≤ 𝑒ln 𝑘−2(
√
𝑛 ln 𝑘)2/𝑛

= 𝑒ln 𝑘−2(𝑛 ln 𝑘)/𝑛

= 𝑒− ln 𝑘

= 1/𝑒ln 𝑘

=
1

𝑘

With concrete values 𝑛 = 1010 and 𝑘 = 1000, we compute the overload relative to the expected value as:
√
𝑛 ln 𝑘

𝑛/𝑘
=

√
1010 ln 1000

107

≈ 0.026

This is an overhead of about 2.6% above the expected load. The probability that there is a server overloaded by at least
2.6% is bounded from above by 1/𝑘 = 0.001, or ≤0.1%. Thus, when there are 𝑛 = 1010 jobs and 𝑘 = 1000 servers,
the randomized algorithm has a high probability (≥99.9%) of producing a schedule where the servers all have a low
overhead (≤2.6%).

Exercise 263 Previously, we demonstrated (page 237) that to use polling to achieve a confidence level 1− 𝛾 and
a margin of error ±𝜀,

𝑛 ≥ 1

2𝜀2
ln(

2

𝛾
)

samples are sufficient when there is a single candidate. We also saw the sampling theorem (page 238), which
states that for 𝑚 candidates,

𝑛 ≥ 1

2𝜀2
ln(

2𝑚

𝛾
)

samples suffice to achieve a confidence level 1− 𝛾 that all estimates 𝑋(𝑗)/𝑛 are within margin of error ±𝜀.

Use the union bound to demonstrate that this latter result follows from the result for a single candidate.

22.4. Load Balancing 240

Part V

Cryptography

241

CHAPTER

TWENTYTHREE

INTRODUCTION TO CRYPTOGRAPHY

Security and privacy are core principles in computing, enabling a wide range of applications including online com-
merce, social networking, wireless communication, and so on. Cryptography, which is concerned with techniques and
protocols for secure communication, is fundamental to building systems that provide security and privacy. In this unit,
we will examine several cryptographic protocols, which address the following needs:

• authentication: proving one’s identity

• privacy/confidentiality: ensuring that no one can read the message except the intended receiver

• integrity: guaranteeing that the received message has not been altered in any way

Our standard problem setup is that we have two parties who wish to communicate, traditionally named Alice and Bob.
However, they are communicating over an insecure channel, and there is an eavesdropper Eve who can observe all their
communication, and in some cases, can even modify the data in-flight. How can Alice and Bob communicate while
achieving the goals of authentication, privacy, and integrity?

A central goal in designing a cryptosystem is Kerckhoff’s principle:

A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.

Thus, we want to ensure that Alice and Bob can communicate securely even if Eve knows every detail about what
protocol they are using, other than the key, a secret piece of knowledge that is never communicated over the insecure
channel.

We refer to the message that Alice and Bob wish to communicate as the plaintext. We want to design a cryptosystem
that involves encoding the message in such a way as to prevent Eve from recovering the plaintext, even with access
to the ciphertext, the result of encoding the message. There are two levels of security around which we can design a
cryptosystem:

• Information-theoretic, or unconditional, security: Eve cannot learn the secret message communicated between
Alice and Bob, even with unbounded computational power.

• Computational, or conditional, security: to learn any information about the secret message, Eve will have to
solve a computationally hard problem.

The cryptosystems we examine all rely to some extent on modular arithmetic. Before we proceed further, we review
some basic details about modular arithmetic.

242

Foundations of Computer Science, Release 0.5

23.1 Review of Modular Arithmetic

Modular arithmetic is a mathematical system that maps the infinitely many integers to a finite set, those in {0, 1, . . . , 𝑛−
1} for some positive modulus 𝑛 ∈ Z+. The core concept in this system is that of congruence: two integers 𝑎 and 𝑏 are
said to be congruent modulo 𝑛, written as

𝑎 ≡ 𝑏 (mod 𝑛)

when 𝑎 and 𝑏 differ by an integer multiple of 𝑛:

∃𝑘 ∈ Z. 𝑎− 𝑏 = 𝑘𝑛

Note that 𝑎 and 𝑏 need not be in the range [0, 𝑛); in fact, if 𝑎 ̸= 𝑏, than at least one must be outside this range for 𝑎 and
𝑏 to be congruent modulo 𝑛. More importantly, for any integer 𝑖 ∈ Z, there is exactly one integer 𝑗 ∈ {0, 1, . . . , 𝑛−1}
such that 𝑖 ≡ 𝑗 (mod 𝑛). This is because the elements in this set are at most 𝑛− 1 apart, so no two elements differ by
a multiple of 𝑛. At the same time, by Euclid’s division lemma88, we know that there exist unique integers 𝑞 and 𝑟 such
that

𝑖 = 𝑛𝑞 + 𝑟

where 0 ≤ 𝑟 < 𝑛. Thus, each integer 𝑖 ∈ Z is mapped to exactly one integer 𝑗 ∈ {0, 1, . . . , 𝑛− 1} by the congruence
relation modulo 𝑛.

Formally, we can define a set of equivalence classes, denoted byZ𝑛, corresponding to each element in {0, 1, . . . , 𝑛−1}:

Z𝑛 = {0, 1, . . . , 𝑛− 1}

Each class 𝑗 consists of the integers that are congruent to 𝑗 modulo 𝑛:

𝑗 = {𝑗, 𝑗 − 𝑛, 𝑗 + 𝑛, 𝑗 − 2𝑛, 𝑗 + 2𝑛, . . . }

However, the overline notation here is cumbersome, so we usually elide it, making the equivalence classes implicit
instead:

Z𝑛 = {0, 1, . . . , 𝑛− 1}

We refer to determining the equivalence class of an integer 𝑖modulo 𝑛 as reducing it modulo 𝑛. If we know what 𝑖 is, we
need only compute its remainder when divided by 𝑛 to reduce it. More commonly, we have a complicated expression
for 𝑖, consisting of additions, subtractions, multiplications, exponentiations, and so on. Rather than evaluating the
expression directly, we can take advantage of properties of modular arithmetic to simplify the task of reducing the
expression.

Property 264 Suppose 𝑎 ≡ 𝑎′ (mod 𝑛) and 𝑏 ≡ 𝑏′ (mod 𝑛) for a modulus 𝑛 ≥ 1. Then

𝑎+ 𝑏 ≡ 𝑎′ + 𝑏′ (mod 𝑛)

and

𝑎− 𝑏 ≡ 𝑎′ − 𝑏′ (mod 𝑛)

Proof 265 By definition of congruence, we have 𝑎− 𝑎′ = 𝑘𝑛 and 𝑏− 𝑏′ = 𝑚𝑛 for some integers 𝑘 and 𝑚. Then

𝑎+ 𝑏 = (𝑘𝑛+ 𝑎′) + (𝑚𝑛+ 𝑏′)

= (𝑘 +𝑚)𝑛+ 𝑎′ + 𝑏′

Since 𝑎 + 𝑏 and 𝑎′ + 𝑏′ differ by an integer (𝑘 +𝑚) multiple of 𝑛, we conclude that 𝑎 + 𝑏 ≡ 𝑎′ + 𝑏′ (mod 𝑛).

88 https://en.wikipedia.org/wiki/Euclidean_division

23.1. Review of Modular Arithmetic 243

https://en.wikipedia.org/wiki/Euclidean_division

Foundations of Computer Science, Release 0.5

The proof for 𝑎− 𝑏 ≡ 𝑎′ − 𝑏′ (mod 𝑛) is similar. □

Property 266 Suppose 𝑎 ≡ 𝑎′ (mod 𝑛) and 𝑏 ≡ 𝑏′ (mod 𝑛) for a modulus 𝑛 ≥ 1. Then

𝑎𝑏 ≡ 𝑎′𝑏′ (mod 𝑛)

Proof 267 By definition of congruence, we have 𝑎− 𝑎′ = 𝑘𝑛 and 𝑏− 𝑏′ = 𝑚𝑛 for some integers 𝑘 and 𝑚. Then

𝑎𝑏 = (𝑘𝑛+ 𝑎′) · (𝑚𝑛+ 𝑏′)

= 𝑘𝑚𝑛2 + 𝑎′𝑚𝑛+ 𝑏′𝑘𝑛+ 𝑎′𝑏′

= (𝑘𝑚𝑛+ 𝑎′𝑚+ 𝑏′𝑘)𝑛+ 𝑎′𝑏′

Since 𝑎𝑏 and 𝑎′𝑏′ differ by an integer (𝑘𝑚𝑛+ 𝑎′𝑚+ 𝑏′𝑘) multiple of 𝑛, we conclude that 𝑎𝑏 ≡ 𝑎′𝑏′ (mod 𝑛).□

Corollary 268 Suppose 𝑎 ≡ 𝑏 (mod 𝑛). Then for any integer 𝑘 ≥ 0,

𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛)

We can prove Corollary 268 by observing that 𝑎𝑘 = 𝑎 · 𝑎 · · · · · 𝑎 is the product of 𝑘 copies of 𝑎 and applying Property
266 along with induction over 𝑘. We leave the details as an exercise.

The following is an example that applies the properties above to reduce a complicated expression.

Example 269 Suppose we wish to find an element 𝑎 ∈ Z7 such that

(2203 · 3281 + 4370)376 ≡ 𝑎 (mod 7)

Note that the properties above do not give us the ability to reduce any of the exponents modulo 7. (Later, we will
see Fermat’s little theorem (page 256), which does give us a means of simplifying exponents. We also will see
fast modular exponentiation (page 245), but we will not use that here.) We can use Property 268 once we reduce
the base

2203 · 3281 + 4370

which we can recursively reduce using the properties above.

Let’s start with 2203. Observe that 23 = 8 ≡ 1 (mod 𝑛). Then

2203 = 2201 · 22

= (23)67 · 4
≡ 167 · 4 (mod 7)

≡ 4 (mod 7)

Similarly, 33 = 27 ≡ −1 (mod 7), so 36 ≡ 1 (mod 7). This gives us

3281 = 3276 · 33 · 32

= (36)46 · 33 · 32

≡ 146 · −1 · 9 (mod 7)

≡ −9 (mod 7)

≡ 5 (mod 7)

23.1. Review of Modular Arithmetic 244

Foundations of Computer Science, Release 0.5

We also have 43 = 26 = (23)2 ≡ 1 (mod 7), so

4370 = 4369 · 4
= (43)123 · 4
≡ 4 (mod 7)

Combining these using the addition and multiplication properties above, we get

2203 · 3281 + 4370 ≡ 4 · 5 + 4 (mod 7)

≡ 24 (mod 7)

≡ 3 (mod 7)

We can now reduce the full expression:

(2203 · 3281 + 4370)376 ≡ 3376 (mod 7)

≡ 3372 · 34 (mod 7)

≡ (36)62 · (32)2 (mod 7)

≡ 162 · 92 (mod 7)

≡ 1 · 22 (mod 7)

≡ 4 (mod 7)

Thus, 𝑎 ≡ 4 (mod 7).

23.1.1 Fast Modular Exponentiation

There are several ways to compute a modular exponentiation 𝑎𝑏 (mod 𝑛) efficiently, and we take a look at two here.

The first is to apply a top-down, divide-and-conquer strategy. We have:

𝑎𝑏 =

⎧⎪⎨⎪⎩
1 if 𝑏 = 0

(𝑎𝑏/2)2 if 𝑏 > 0 is even
𝑎 · (𝑎(𝑏−1)/2)2 if 𝑏 > 0 is odd

This leads to the following algorithm:

Algorithm 270 (Top-down Fast Modular Exponentiation)

function ModExp(𝑎, 𝑏, 𝑛)
if 𝑏 = 0 then return 1
𝑚 = ModExp(𝑎, ⌊𝑏/2⌋, 𝑛)
𝑚 = 𝑚 ·𝑚 mod 𝑛
if 𝑏 is odd then

𝑚 = 𝑎 ·𝑚 mod 𝑛
return 𝑚

This gives us the following recurrence for the number of multiplications and modulo operations:

𝑇 (𝑏) = 𝑇 (𝑏/2) +𝑂(1)

Applying the Master theorem (page 14), we get 𝑇 (𝑏) = 𝑂(log 𝑏).

Furthermore, the numbers in this algorithm are always computed modulo 𝑛, so they are at most as large as 𝑛. Thus,
each multiplication and modulo operation can be done efficiently with respect to𝑂(log 𝑛), and the algorithm as a whole
is efficient.

23.1. Review of Modular Arithmetic 245

Foundations of Computer Science, Release 0.5

An alternative method is to apply a bottom-up strategy. Here, we make use of the binary representation of 𝑏,

𝑏 = 𝑏𝑟 · 2𝑟 + 𝑏𝑟−1 · 2𝑟−1 + · · ·+ 𝑏0 · 20

where 𝑏𝑖 is either 0 or 1. Then

𝑎𝑏 = 𝑎𝑏𝑟·2
𝑟+𝑏𝑟−1·2𝑟−1+···+𝑏0·20

= 𝑎𝑏𝑟·2
𝑟 × 𝑎𝑏𝑟−1·2𝑟−1 × · · · × 𝑎𝑏0·2

0

Thus, we can compute 𝑎2
𝑖

for each 0 ≤ 𝑖 ≤ 𝑟, where 𝑟 = ⌊log 𝑏⌋. We do so as follows:

Algorithm 271 (Bottom-up Fast Modular Exponentiation)

function ModExpBottomUp(𝑎, 𝑏, 𝑛)
allocate powers[0, . . . , ⌊log 𝑏⌋]
powers[0] = 𝑎
for 𝑖 = 1 to ⌊log 𝑏⌋ do

powers[𝑖] = powers[𝑖− 1] · powers[𝑖− 1] mod 𝑛

prod = 1
for 𝑖 = 0 to ⌊log 𝑏⌋ do

if ⌊𝑏/2𝑖⌋ is odd then
prod = prod · powers[𝑖] mod 𝑛

return prod

The operation ⌊𝑏/2𝑖⌋ is a right shift on the binary representation of 𝑏, and it can be done in linear time. As with the
top-down algorithm, we perform 𝑂(log 𝑏) multiplication and modulo operations, each on numbers that are 𝑂(log 𝑛)
in size. Thus, the runtime is efficient in the size of the input.

23.1.2 Division and Modular Inverses

We have seen how to do addition, subtraction, multiplication, and exponentiation in modular arithmetic, as well as sev-
eral properties that help in reducing a complication expression using these operations. What about division? Division
is not a closed operation over the set of integers, so it is perhaps not surprising that division is not always well-defined
in modular arithmetic. However, for some combinations of 𝑛 and 𝑎 ∈ Z𝑛, we can determine a modular inverse that
allows us to divide by 𝑎. Recall that in standard arithmetic, dividing by a number 𝑥 is equivalent to multiplying by the
𝑥−1, the multiplicative inverse of 𝑥. For example:

21/4 = 21 · 4−1 = 21 · 1
4
=

21

4

In the same way, division by 𝑎 is defined modulo 𝑛 exactly when an inverse 𝑎−1 exists for 𝑎 modulo 𝑛.

Theorem 272 Let 𝑛 be a positive integer and 𝑎 be an element of Z+
𝑛 . An inverse of 𝑎 modulo 𝑛 is an element

𝑏 ∈ Z+
𝑛 such that

𝑎 · 𝑏 ≡ 1 (mod 𝑛)

An inverse of 𝑎, denoted as 𝑎−1, exists modulo 𝑛 if and only if 𝑎 and 𝑛 are coprime, i.e. gcd(𝑎, 𝑛) = 1.

A modular inverse can be efficiently found using the extended Euclidean algorithm, a modification of Euclid’s algorithm
(page 5).

23.1. Review of Modular Arithmetic 246

Foundations of Computer Science, Release 0.5

Algorithm 273 (Extended Euclidean Algorithm)

Input: integers 𝑥 ≥ 𝑦 ≥ 0, not both zero
Output: their greatest common divisor 𝑔 = gcd(𝑥, 𝑦), and integers 𝑎, 𝑏 such that 𝑎𝑥+ 𝑏𝑦 = 𝑔

function ExtendedEuclid(𝑥, 𝑦)
if 𝑦 = 0 then return (𝑥, 1, 0)

(𝑔, 𝑎′, 𝑏′) = ExtendedEuclid(𝑦, 𝑥 mod 𝑦)
return (𝑔, 𝑏′, 𝑎′ − 𝑏′ · ⌊𝑥/𝑦⌋)

The complexity bound is the same as for Euclid’s algorithm (page 10) – 𝑂(log 𝑥) number of operations.

Claim 274 Given 𝑥 > 𝑦 ≥ 0, the extended Euclidean algorithm returns a triple (𝑔, 𝑎, 𝑏) such that

𝑔 = 𝑎𝑥+ 𝑏𝑦

and 𝑔 = gcd(𝑥, 𝑦).

Proof 275 We demonstrate that 𝑔 = 𝑎𝑥+ 𝑏𝑦 by (strong) induction over 𝑦:

• Base case: 𝑦 = 0. The algorithm returns (𝑔, 𝑎, 𝑏) = (𝑥, 1, 0), and we have

𝑎𝑥+ 𝑏𝑦 = 1 · 𝑥+ 0 · 0 = 𝑥 = 𝑔

• Inductive step: 𝑦 > 0. Let 𝑥 = 𝑞𝑦 + 𝑟, so that 𝑞 = ⌊𝑥/𝑦⌋ and 𝑟 = 𝑥 mod 𝑦 < 𝑦. Given arguments 𝑦 and
𝑟, the recursion produces (𝑔, 𝑎′, 𝑏′). By the inductive hypothesis, we assume that

𝑔 = 𝑎′𝑦 + 𝑏′𝑟

The algorithm computes the return values 𝑎 and 𝑏 as

𝑎 = 𝑏′

𝑏 = 𝑎′ − 𝑏′𝑞

Then

𝑎𝑥+ 𝑏𝑦 = 𝑏′𝑥+ (𝑎′ − 𝑏′𝑞)𝑦

= 𝑏′(𝑞𝑦 + 𝑟) + (𝑎′ − 𝑏′𝑞)𝑦

= 𝑏′𝑟 + 𝑎′𝑦

= 𝑔

Thus, we conclude that 𝑔 = 𝑎𝑥+ 𝑏𝑦 as required.

Given 𝑥 and 𝑦, when 𝑔 = gcd(𝑥, 𝑦) = 1, we have

𝑎𝑥 = 1− 𝑏𝑦

𝑏𝑦 = 1− 𝑎𝑥

which imply that

𝑎𝑥 ≡ 1 (mod 𝑦)

𝑏𝑦 ≡ 1 (mod 𝑥)

by definition of modular arithmetic. Thus, the extended Euclidean algorithm computes 𝑎 as the inverse of 𝑥 modulo 𝑦
and 𝑏 as the inverse of 𝑦 modulo 𝑥, when these inverses exist.

23.1. Review of Modular Arithmetic 247

Foundations of Computer Science, Release 0.5

Example 276 We compute the inverse of 13 modulo 21 using the extended Euclidean algorithm. Since 13 and
21 are coprime, such an inverse must exist.

We keep track of the values of 𝑥, 𝑦, 𝑔, 𝑎, and 𝑏 at each recursive step of the algorithm. First, we trace the algorithm
from the initial 𝑥 = 21, 𝑦 = 13 down to the base case:

Step 𝑥 𝑦

0 21 13
1 13 8
2 8 5
3 5 3
4 3 2
5 2 1
6 1 0

We can then trace the algorithm back up, computing the return values 𝑔, 𝑎, 𝑏:

Step 𝑥 𝑦 𝑔 𝑎 𝑏

6 1 0 1 1 0
5 2 1 1 0 1− 0 · ⌊ 2

1⌋ = 1
4 3 2 1 1 0− 1 · ⌊ 3

2⌋ = −1
3 5 3 1 −1 1− (−1) · ⌊ 5

3⌋ = 2
2 8 5 1 2 −1− 2 · ⌊ 8

5⌋ = −3
1 13 8 1 −3 2− (−3) · ⌊ 13

8 ⌋ = 5
0 21 13 1 5 −3− 5 · ⌊ 21

13⌋ = −8

Thus, we have 𝑏𝑦 = −8 · 13 ≡ 1 (mod 21). Translating 𝑏 to an element of Z21, we get 𝑏 = −8 ≡ 13 (mod 21),
which means that 13 is its own inverse modulo 21. We can verify this:

13 · 13 = 169 = 8 · 21 + 1 ≡ 1 (mod 21)

Exercise 277 The extended Euclidean algorithm is a constructive proof that when 𝑔𝑐𝑑(𝑎, 𝑛) = 1 for 𝑛 ∈ Z+ and
𝑎 ∈ Z+

𝑛 , an inverse of 𝑎 exists modulo 𝑛. Show that no such inverse exists when 𝑔𝑐𝑑(𝑎, 𝑛) > 1, completing the
proof of Theorem 272.

23.2 One-time Pad

We now take a look at the first category of cryptosystems, that of information-theoretic security, which relies on one-
time pads.

Definition 278 (One-time Pad) A one-time pad is an encryption technique that relies on a key with the following
properties:

• The key is a random string at least as long as the plaintext.

• The key is preshared between the communicating parties over some secure channel.

• The key is only used once (hence the name one-time pad).

23.2. One-time Pad 248

Foundations of Computer Science, Release 0.5

As an example of a scheme that uses a one-time pad, consider a plaintext message

𝑚 = 𝑚1𝑚2 . . .𝑚𝑛

where each symbol 𝑚𝑖 is a lowercase English letter. Let the secret key also be composed of lowercase letters:

𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛

Here, the key is the same length as the message. We encrypt the message as

𝐸𝑘(𝑚) = 𝑐1𝑐2 . . . 𝑐𝑛

by taking the sum of each plaintext character and the corresponding key character modulo 26:

𝑐𝑖 ≡ 𝑚𝑖 + 𝑘𝑖 (mod 26)

We map between lowercase characters and integers modulo 26, with 0 taken to be the letter a, 1 to be the letter b, and
so on. Then decryption is as follows:

𝐷𝑘(𝑐) = 𝑑1𝑑2 . . . 𝑑𝑛, where 𝑑𝑖 ≡ 𝑐𝑖 − 𝑘𝑖 (mod 26)

Applying both operations results in 𝐷𝑘(𝐸𝑘(𝑚)) = 𝑚, the original plaintext message.

As a concrete example, suppose 𝑚 = flower and 𝑘 = lafswl. Then the ciphertext is

𝐸𝑘(𝑚) = qltoac

and we have 𝐷𝑘(𝐸𝑘(𝑚)) = flower.

Observe that Eve has no means of learning any information about 𝑚 from the ciphertext qltoac, other than that the
message is six letters (and we can avoid even that by padding the message with random additional data). Even if
Eve knows that the message is in English, she has no way of determining which six-letter word it is. For instance,
the ciphertext qltoac could have been produced by the plaintext futile and key lragpy. In fact, for any six-letter
sequence 𝑠, there is a key 𝑘 such that 𝐸𝑘(𝑠) = 𝑐 for any six-letter ciphertext 𝑐. Without having access to either the
plaintext or key directly, Eve cannot tell whether the original message is flower, futile, or some other six-letter
sequence.

Thus, a one-time-pad scheme provides information-theoretic security – an adversary cannot recover information about
the message that they do not already know. In fact, one-time-pad schemes are the only cryptosystems that provide this
level of security. However, there are significant tradeoffs, which are exactly the core requirements of a one-time pad:

• The key must be preshared between the communicating parties through some other, secure channel.

• The key has to be as long as the message, which limits the amount of information that can be communicated
given a preshared key.

• The key can only be used once.

These limitations make one-time pads costly to use in practice. Perhaps by relaxing some of these restrictions, we can
obtain “good-enough” security at a lower cost? We first take a look at what happens when we reduce the key size – in
fact, we will take this to the extreme, reducing our key size to a single symbol. This results in a scheme known as a
Caesar cipher.

Definition 279 (Caesar Cipher) Let 𝑚 = 𝑚1𝑚2 . . .𝑚𝑛 be a plaintext message. Let 𝑠 be a single symbol to be
used as the key. Then in a Caesar cipher, 𝑚 is encrypted as

𝐸𝑠(𝑚) = 𝑐1𝑐2 . . . 𝑐𝑛, where 𝑐𝑖 ≡ 𝑚𝑖 + 𝑠 (mod 26)

and a ciphertext 𝑐 is decrypted as

𝐷𝑠(𝑐) = 𝑑1𝑑2 . . . 𝑑𝑛, where 𝑑𝑖 ≡ 𝑐𝑖 − 𝑠 (mod 26)

23.2. One-time Pad 249

Foundations of Computer Science, Release 0.5

The result is 𝐷𝑠(𝐸𝑠(𝑚)) = 𝑚.

Observe that a Caesar cipher is similar to a one-time pad, except that the key only has one character of randomness as
opposed to 𝑛; essentially, we have 𝑘𝑖 = 𝑠 for all 𝑖, i.e. a key where all the characters are the same.

Unfortunately, the Caesar cipher suffers from a fatal flaw in that it can be defeated by statistical analysis – in particular,
the relative frequencies of letters in the ciphertext allow symbols to be mapped to the underlying message, using a
frequency table of how common individual letters are in the language in which the message is written. In English, for
instance, the letters e and t are most common. A full graph of frequencies of English letters in “average” English text
is as follows:

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

a b c d e f g h i j k l m n o p q r s t u v w x y z

A Caesar cipher merely does a circular shift of these frequencies, making it straightforward to recover the key as the
magnitude of that shift. The longer the message, the more likely the underlying frequencies match the average for the
language, and the more easily the scheme is broken.

Exercise 280 Suppose the result of applying a Caesar cipher produces the ciphertext

𝐸𝑠(𝑚) = cadcq

Use frequency analysis to determine both the original message 𝑚 and the key 𝑠.

Note that another weakness in the Caesar-cipher scheme as described above is that the key is restricted to one of twenty-
six possibilities, making it trivial to brute force the mapping. However, the scheme can be tweaked to use a much larger
character set, making it harder to brute force but still leaving it open to statistical attacks in the form of frequency
analysis.

A scheme that compromises between a one-time pad and Caesar cipher, by making the key larger than a single character
but smaller than the message size, still allows information to leak through statistical attacks. Such a scheme is essentially
the same as reusing a one-time pad more than once. What can go wrong if we do so?

23.2. One-time Pad 250

Foundations of Computer Science, Release 0.5

Suppose we have the following two plaintext messages

𝑚 = 𝑚1𝑚2 . . .𝑚𝑛

𝑚′ = 𝑚′
1𝑚

′
2 . . .𝑚

′
𝑛

where each character is a lowercase English letter. If we encode them both with the same key 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛, we
obtain the ciphertexts

𝐸𝑘(𝑚) = 𝑐1𝑐2 . . . 𝑐𝑛, where 𝑐𝑖 ≡ 𝑚𝑖 + 𝑘𝑖 (mod 26)

𝐸𝑘(𝑚
′) = 𝑐′1𝑐

′
2 . . . 𝑐

′
𝑛, where 𝑐′𝑖 ≡ 𝑚′

𝑖 + 𝑘𝑖 (mod 26)

If both these ciphertexts go out over the insecure channel, Eve can observe them both and compute their difference:

𝐸𝑘(𝑚)− 𝐸𝑘(𝑚
′) = (𝑐1 − 𝑐′1)(𝑐2 − 𝑐′2) . . . (𝑐𝑛 − 𝑐′𝑛)

= (𝑚1 −𝑚′
1)(𝑚2 −𝑚′

2) . . . (𝑚𝑛 −𝑚′
𝑛)

= 𝑚−𝑚′

Here, all subtractions are done modulo 26. The end result is the character-by-character difference between the two mes-
sages (modulo 26). Unless the plaintext messages are random strings, this difference is not random! Again, statistical
attacks can be used to obtain information about the original messages.

As a pictorial illustration of how the difference of two messages reveals information, the following is an image encoded
with a random key under a one-time pad:

The result appears as just random noise, as we would expect. The following is another image encoded with the same
key:

This result too appears as random noise. However it is the same noise, and if we subtract the two ciphertexts, the noise
all cancels out:

23.2. One-time Pad 251

Foundations of Computer Science, Release 0.5

The end result clearly reveals information about the original images.

In summary, the only way to obtain information-theoretic security is by using a one-time-pad scheme, where the key is
at least as long as the message and is truly used only once. A one-time-pad-like scheme that compromises on these two
characteristics opens up the scheme to statistical attacks. The core issue is that plaintext messages are not random –
they convey information between parties by virtue of not being random. In a one-time pad, the key is the actual source
of the randomness in the ciphertext. And if we weaken the scheme by reducing the key size or reusing a key, we lose
enough randomness to enable an adversary to learn information about the plaintext messages.

23.2. One-time Pad 252

CHAPTER

TWENTYFOUR

DIFFIE-HELLMAN KEY EXCHANGE

Many encryption schemes, including a one-time pad, are symmetric, using the same key for both encryption and de-
cryption. Such a scheme requires a preshared secret key that is known to both communicating parties. Ideally, we’d
like the two parties to be able to establish a shared key even if all their communication is over an insecure channel. This
is known as the key exchange problem.

One solution to the key-exchange problem is the Diffie-Hellman protocol. The central idea is that each party has its
own secret key – this is a private key, since it is never shared with anyone. They each use their own private key to
generate a public key, which they transmit to each other over the insecure channel. A public key is generated in such a
way that recovering the private key would require solving a computationally hard problem, resulting in computational
rather than information-theoretic security. Finally, each party uses its own private key and the other party’s public key
to obtain a shared secret.

Before we examine the details of the Diffie-Hellman protocol, we discuss some relevant concepts from modular arith-
metic. Let Z𝑞 refer to the set of integers between 0 and 𝑞 − 1, inclusive:

Z𝑞 = {0, 1, 2, . . . , 𝑞 − 1}

We then define a generator of Z𝑝, where 𝑝 is prime, as follows:

Definition 281 (Generator) An element 𝑔 ∈ Z𝑝, where 𝑝 is prime, is a generator of Z𝑝 if for every nonzero
element 𝑥 ∈ Z𝑝 (i.e. every element in Z+

𝑝), there exists a number 𝑖 ∈ N such that:

𝑔𝑖 ≡ 𝑥 (mod 𝑝)

In other words, 𝑔 is an 𝑖th root of 𝑥 over Z𝑝 for some natural number 𝑖.

As an example, 𝑔 = 2 is a generator of Z5:

20 = 1 ≡ 1 (mod 5)

21 = 2 ≡ 2 (mod 5)

22 = 4 ≡ 4 (mod 5)

23 = 8 ≡ 3 (mod 5)

Similarly, 𝑔 = 3 is a generator of Z7:

30 = 1 ≡ 1 (mod 7)

31 = 3 ≡ 3 (mod 7)

32 = 9 ≡ 2 (mod 7)

33 = 27 ≡ 6 (mod 7)

34 = 81 ≡ 4 (mod 7)

35 = 243 ≡ 5 (mod 7)

253

Foundations of Computer Science, Release 0.5

On the other hand, 𝑔 = 2 is not a generator of Z7:

20 = 1 ≡ 1 (mod 7)

21 = 2 ≡ 2 (mod 7)

22 = 4 ≡ 4 (mod 7)

23 = 8 ≡ 1 (mod 7)

24 = 16 ≡ 2 (mod 7)

25 = 32 ≡ 4 (mod 7)

. . .

We see that the powers of 𝑔 = 2 are cyclic, without ever generating the elements {3, 5, 6} ⊆ Z+
7 .

Theorem 282 If 𝑝 is prime, then Z𝑝 has at least one generator.

This theorem was first proved by Gauss89. Moreover, Z𝑝 has 𝜑(𝑝−1) generators when 𝑝 is prime, where 𝜑(𝑛) is Euler’s
totient function90, making it relatively easy to find a generator over Z𝑝.

We now return to the Diffie-Hellman protocol, which is as follows:

Protocol 283 (Diffie-Hellman) Suppose two parties, henceforth referred to as Alice and Bob, wish to establish
a shared secret key 𝑘 but can only communicate over an insecure channel. Alice and Bob first establish public
parameters 𝑝, a very large prime number, and 𝑔, a generator of Z𝑝. Then:

• Alice picks a random 𝑎 ∈ Z+
𝑝 as her private key, computes 𝐴 ≡ 𝑔𝑎 (mod 𝑝) as her public key, and sends

𝐴 to Bob over the insecure channel.

• Bob picks a random 𝑏 ∈ Z+
𝑝 as his private key, computes 𝐵 ≡ 𝑔𝑏 (mod 𝑝) as his public key, and sends 𝐵

to Alice over the insecure channel.

• Alice computes

𝑘 ≡ 𝐵𝑎 ≡ (𝑔𝑏)𝑎 ≡ 𝑔𝑎𝑏 (mod 𝑝)

as the shared secret key.

• Bob computes

𝑘 ≡ 𝐴𝑏 ≡ (𝑔𝑎)𝑏 ≡ 𝑔𝑎𝑏 (mod 𝑝)

as the shared secret key.

This protocol is efficient – suitable values of 𝑝 and 𝑔 can be obtained from public tables, and Alice and Bob each need
to perform two modular exponentiations, which can be done efficiently (page 245). But is it secure? By Kerckhoff’s
principle, Eve knows how the protocol works, and she observes the values 𝑝, 𝑔, 𝐴 ≡ 𝑔𝑎 (mod 𝑝), and 𝐵 ≡ 𝑔𝑏

(mod 𝑝). However, she does not know 𝑎 or 𝑏, since those values are never communicated and so are known only to
Alice and Bob, respectively. Can Eve obtain 𝑘 ≡ 𝑔𝑎𝑏 (mod 𝑝) from what she knows? The Diffie-Hellman assumption
states that she cannot do so efficiently.

Claim 284 (Diffie-Hellman Assumption) There is no efficient algorithm that computes 𝑔𝑎𝑏 (mod 𝑝) given:

• a prime 𝑝,

• a generator 𝑔 of Z𝑝,

89 https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
90 https://en.wikipedia.org/wiki/Euler%27s_totient_function

254

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Euler%27s_totient_function
https://en.wikipedia.org/wiki/Euler%27s_totient_function

Foundations of Computer Science, Release 0.5

• 𝑔𝑎 (mod 𝑝), and

• 𝑔𝑏 (mod 𝑝).

What if, rather than attempting to recover 𝑔𝑎𝑏 (mod 𝑝) directly, Eve attempts to recover one of the private keys 𝑎 or
𝑏? This entails solving the discrete logarithm problem.

Definition 285 (Discrete Logarithm) Let 𝑞 be a modulus and let 𝑔 be a generator of Z𝑞 . The discrete logarithm
of 𝑥 ∈ Z+

𝑞 with respect to the base 𝑔 is an integer 𝑖 such that

𝑔𝑖 ≡ 𝑥 (mod 𝑞)

The discrete logarithm problem is the task of computing 𝑖, given 𝑞, 𝑔, and 𝑥.

If 𝑞 is prime and 𝑔 is a generator of Z𝑞 , then every 𝑥 ∈ Z+
𝑞 has a discrete log 𝑖 with respect to base 𝑔 such that

0 ≤ 𝑖 < 𝑞 − 191. Thus, a brute-force algorithm to compute the discrete log is to try every possible value in this range.
However, such an algorithm requires checking 𝑂(𝑞) possible values, and this is exponential in the size of the inputs,
which take 𝑂(log 𝑞) bits to represent. The brute-force algorithm is thus inefficient.

Do better algorithms exist for computing a discrete log? Indeed they do, including the baby-step giant-step algorithm92,
which requires𝑂(

√
𝑞)multiplications on numbers of size𝑂(log 𝑞). However, as we saw in primality testing (page 270),

this is still not polynomial in the input size 𝑂(log 𝑞). In fact, the discrete logarithm assumption states that no efficient
algorithm exists.

Claim 286 (Discrete Logarithm Assumption) There is no efficient algorithm to compute 𝑖 given:

• 𝑞,

• a generator 𝑔 of Z𝑞 , and

• 𝑔𝑖 (mod 𝑞),

where 0 ≤ 𝑖 < 𝑞 − 1.

Neither the Diffie-Hellman nor the discrete logarithm assumption have been proven. However, they have both held
up in practice, as there is no known algorithm to defeat either assumption on classical computers. As we will briefly
discuss later, the assumptions do not hold on quantum computers (page 261), but this is not yet a problem in practice
as no scalable quantum computer exists.

91 This is a consequence of Fermat’s little theorem (page 256), which states that 𝑥𝑞−1 ≡ 1 (mod 𝑞) for prime 𝑞 and 𝑥 ∈ Z+
𝑞 .

92 https://en.wikipedia.org/wiki/Baby-step_giant-step

255

https://en.wikipedia.org/wiki/Baby-step_giant-step

CHAPTER

TWENTYFIVE

RSA

The Diffie-Hellman protocol uses private and public keys for key exchange, resulting in a shared key known to both com-
municating parties, which can then be used in a symmetric encryption scheme. However, the concept of a public-key
cryptosystem can also be used to formulate an asymmetric encryption protocol, which uses different keys for encryption
and decryption. The RSA (Rivest-Shamir-Adleman) cryptosystem gives rise to one such protocol that is widely used in
practice.

As with Diffie-Hellman, the RSA system relies on facts about modular arithmetic. Core to the working of RSA is
Fermat’s little theorem and its variants.

Theorem 287 (Fermat’s Little Theorem) Let 𝑝 be a prime number. Let 𝑎 be any element of Z+
𝑝 , where

Z+
𝑝 = {1, 2, . . . , 𝑝− 1}

Then 𝑎𝑝−1 ≡ 1 (mod 𝑝).

Corollary 288 Let 𝑝 be a prime number. Then 𝑎𝑝 ≡ 𝑎 (mod 𝑝) for any element 𝑎 ∈ Z𝑝, where

Z𝑝 = {0, 1, . . . , 𝑝− 1}

As an example, let 𝑝 = 7. Then:

07 = 0 ≡ 0 (mod 7)
17 = 1 ≡ 1 (mod 7)
27 = 128 = 2 + 18 · 7 ≡ 2 (mod 7)
37 = 2187 = 3 + 312 · 7 ≡ 3 (mod 7)
47 = 16384 = 4 + 2340 · 7 ≡ 4 (mod 7)
57 = 78125 = 5 + 11160 · 7 ≡ 5 (mod 7)
67 = 279936 = 6 + 39990 · 7 ≡ 6 (mod 7)

Fermat’s little theorem can be extended to the product of two distinct primes.

Theorem 289 Let 𝑛 = 𝑝𝑞 be a product of two distinct primes, i.e. 𝑝 ̸= 𝑞. Let 𝑎 be an element of Z𝑛. Then

𝑎1+𝑘𝜑(𝑛) ≡ 𝑎 (mod 𝑛)

where 𝑘 ∈ N and 𝜑(𝑛) is Euler’s totient function, whose value is the number of elements in Z+
𝑛 that are coprime

to 𝑛. For a product of two distinct primes 𝑛 = 𝑝𝑞,

𝜑(𝑝𝑞) = (𝑝− 1)(𝑞 − 1)

Proof 290 We prove Theorem 289 using Fermat’s little theorem. First, we show that for any 𝑎 ∈ Z𝑛 where𝑛 = 𝑝𝑞
is the product of two distinct primes 𝑝 and 𝑞, if 𝑎 ≡ 𝑏 (mod 𝑝) and 𝑎 ≡ 𝑏 (mod 𝑞), then 𝑎 ≡ 𝑏 (mod 𝑛). By

256

Foundations of Computer Science, Release 0.5

definition of modular arithmetic, we have

𝑎 = 𝑘𝑝+ 𝑏 (since 𝑎 ≡ 𝑏 (mod 𝑝))
𝑎 = 𝑚𝑞 + 𝑏 (since 𝑎 ≡ 𝑏 (mod 𝑞))

where 𝑘 and 𝑚 are integers. Then:

𝑘𝑝+ 𝑏 = 𝑚𝑞 + 𝑏

𝑘𝑝 = 𝑚𝑞

Since 𝑝 divides 𝑘𝑝, 𝑝 also divides 𝑚𝑞; however, since 𝑝 is a distinct prime from 𝑞, this implies that 𝑝 divides 𝑚
(by Euclid’s lemma93, which states that if a prime 𝑝 divides 𝑎𝑏 where 𝑎, 𝑏 ∈ Z, then 𝑝 must divide at least one of
𝑎 or 𝑏). Thus, 𝑚 = 𝑟𝑝 for some integer 𝑟, and we have

𝑎 = 𝑚𝑞 + 𝑏

= 𝑟𝑝𝑞 + 𝑏

≡ 𝑏 (mod 𝑝𝑞)

Now consider 𝑎1+𝑘𝜑(𝑛). If 𝑎 = 0, we trivially have

01+𝑘𝜑(𝑛) ≡ 0 (mod 𝑛)

If 𝑎 ̸= 0, we have:

𝑎1+𝑘𝜑(𝑛) = 𝑎1+𝑘(𝑝−1)(𝑞−1)

= 𝑎 · (𝑎𝑝−1)𝑘(𝑞−1)

≡ 𝑎 · 1𝑘(𝑞−1) (mod 𝑝) (by Fermat’s little theorem)
≡ 𝑎 (mod 𝑝)

Similarly:

𝑎1+𝑘𝜑(𝑛) = 𝑎1+𝑘(𝑝−1)(𝑞−1)

= 𝑎 · (𝑎𝑞−1)𝑘(𝑝−1)

≡ 𝑎 · 1𝑘(𝑝−1) (mod 𝑞) (by Fermat’s little theorem)
≡ 𝑎 (mod 𝑞)

Applying our earlier result, we conclude that 𝑎1+𝑘𝜑(𝑛) ≡ 𝑎 (mod 𝑛). □

93 https://en.wikipedia.org/wiki/Euclid%27s_lemma

As an example, let 𝑛 = 6. We have 𝜑(𝑛) = 2. Then:

03 = 0 ≡ 0 (mod 6)
13 = 1 ≡ 1 (mod 6)
23 = 8 = 2 + 1 · 6 ≡ 2 (mod 6)
33 = 27 = 3 + 4 · 6 ≡ 3 (mod 6)
43 = 64 = 4 + 10 · 6 ≡ 4 (mod 6)
53 = 125 = 5 + 20 · 6 ≡ 5 (mod 6)

Proof of Fermat’s Little Theorem

Fermat’s little theorem has many proofs; we take a look at a proof that relies solely on the existence of modular

257

https://en.wikipedia.org/wiki/Euclid%27s_lemma

Foundations of Computer Science, Release 0.5

inverses (Theorem 272).

Let 𝑝 be prime, and let 𝑎 ∈ Z+
𝑝 be an arbitrary nonzero element of Z𝑝. Consider the set of elements

𝑆 = {1𝑎, 2𝑎, . . . , (𝑝− 1)𝑎}

These elements are all nonzero and distinct when taken modulo 𝑝:

• Suppose 𝑘𝑎 ≡ 0 (mod 𝑝). Since 𝑎 ∈ Z+
𝑝 , it has an inverse 𝑎−1 modulo 𝑝, so we can multiply both sides by

𝑎−1 to obtain 𝑘 ≡ 0 (mod 𝑝). Since 𝑘 ̸≡ 0 (mod 𝑝) for all elements in {1, 2, . . . , 𝑝− 1}, 𝑘𝑎 ̸≡ 0 (mod 𝑝)
for all elements 𝑘𝑎 ∈ 𝑆.

• Suppose 𝑘𝑎 ≡ 𝑚𝑎 (mod 𝑝). Multiplying both sides by 𝑎−1, we obtain 𝑘 ≡ 𝑚 (mod 𝑝). Since all pairs of
elements in {1, 2, . . . , 𝑝 − 1} are distinct modulo 𝑝, all pairs of elements in 𝑆 = {1𝑎, 2𝑎, . . . , (𝑝 − 1)𝑎} are
also distinct modulo 𝑝.

Since there are 𝑝 − 1 elements in 𝑆, and they are all nonzero and distinct modulo 𝑝, the elements of 𝑆 when taken
modulo 𝑝 are exactly those in Z+

𝑝 . Thus, the products of the elements in each set are equivalent modulo 𝑝:

1𝑎× 2𝑎× · · · × (𝑝− 1)𝑎 ≡ 1× 2× · · · × (𝑝− 1) (mod 𝑝)

(1× 2× · · · × (𝑝− 1)) · 𝑎𝑝−1 ≡ 1× 2× · · · × (𝑝− 1) (mod 𝑝)

Since 𝑝 is prime, all elements in Z+
𝑝 have an inverse modulo 𝑝, so we multiply both sides above by (1−1 × 2−1 ×

· · · × (𝑝− 1)−1) to obtain

𝑎𝑝−1 ≡ 1 (mod 𝑝)

Now that we have established the underlying mathematical facts, we take a look at the RSA encryption protocol.

Protocol 291 (RSA Encryption) Suppose Bob wishes to send a message 𝑚 to Alice, but the two can only com-
municate over an insecure channel.

• Alice chooses two very large, distinct primes 𝑝 and 𝑞. We assume without loss of generality that 𝑚, when
interpreted as an integer (using the bitstring representation of 𝑚), is smaller than 𝑛 = 𝑝𝑞; otherwise, 𝑚 can
be divided into smaller pieces that are then sent separately using this protocol.

• Alice chooses an element

𝑒 ∈ Z+
𝑛 such that gcd(𝑒, 𝜑(𝑛)) = 1

as her public key, with the requirement that it be coprime with 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1). She computes the
inverse of 𝑒 modulo 𝜑(𝑛)

𝑑 ≡ 𝑒−1 (mod 𝜑(𝑛))

as her private key.

• Alice sends 𝑛 and 𝑒 to Bob.

• Bob computes

𝑐 ≡ 𝑚𝑒 (mod 𝑛)

as the ciphertext and sends it to Alice.

258

Foundations of Computer Science, Release 0.5

• Alice computes

𝑚′ ≡ 𝑐𝑑 (mod 𝑛)

with the result that 𝑚′ = 𝑚.

This protocol is efficient. Alice can find large primes using an efficient primality test such as the Fermat test (page 271)
– in fact, she need only do this once, reusing the same parameters 𝑛, 𝑒, 𝑑 for future communication. Computing the
inverse of 𝑒 can be done efficiently using the extended Euclidean algorithm. Finally, modular exponentiation can also
be done efficiently (page 245).

Does the protocol work? We have

𝑚′ ≡ 𝑐𝑑 ≡ 𝑚𝑒𝑑 (mod 𝑛)

Since 𝑑 ≡ 𝑒−1 (mod 𝜑(𝑛)), we have

𝑒𝑑 ≡ 1 (mod 𝜑(𝑛))

= 1 + 𝑘𝜑(𝑛)

by definition of modular arithmetic, where 𝑘 ∈ N. By Theorem 289,

𝑚′ ≡ 𝑚𝑒𝑑 (mod 𝑛)

≡ 𝑚1+𝑘𝜑(𝑛) (mod 𝑛)

≡ 𝑚 (mod 𝑛)

Thus, Alice does indeed recover the intended message 𝑚.

Finally, is the protocol secure? The public information that Eve can observe consists of 𝑛, 𝑒, and 𝑐 ≡ 𝑚𝑒 (mod 𝑛).
Eve does not know the private parameters 𝑝, 𝑞, 𝑑, which Alice has kept to herself. Can Eve recover 𝑚? The RSA
assumption states that she cannot do so efficiently.

Claim 292 (RSA Assumption) There is no algorithm that efficiently computes 𝑚 given:

• a product of two distinct primes 𝑛,

• an element 𝑒 ∈ Z+
𝑛 such that gcd(𝑒, 𝜑(𝑛)) = 1, and

• 𝑚𝑒 (mod 𝑛).

Rather than trying to compute 𝑚 directly, Eve could attempt to compute 𝜑(𝑛), which would allow her to compute
𝑑 ≡ 𝑒−1 (mod 𝜑(𝑛)) and thus decrypt the ciphertext 𝑐 ≡ 𝑚𝑒 (mod 𝑛) using the same process as Alice. However,
recovering 𝜑(𝑛) = (𝑝− 1)(𝑞− 1) is as hard as factoring 𝑛 = 𝑝𝑞, and the factorization hardness assumption states that
she cannot do this efficiently.

Claim 293 (Factorization Hardness Assumption) There is no efficient algorithm to compute the prime factor-
ization 𝑝1, 𝑝2, . . . 𝑝𝑘 of an integer 𝑛, where

𝑛 = 𝑝𝑎1
1 · 𝑝𝑎2

2 · · · · · 𝑝𝑎𝑘

𝑘

for 𝑎𝑖 ∈ Z+.

Like the Diffie-Hellman and discrete logarithm assumptions, the RSA and factorization hardness assumptions have not
been proven, but they appear to hold in practice. And like the former two assumptions, the latter two do not hold on
quantum computers (page 261); we will discuss this momentarily.

259

Foundations of Computer Science, Release 0.5

Exercise 294 Suppose that 𝑛 = 𝑝𝑞 is a product of two distinct primes 𝑝 and 𝑞. Demonstrate that obtaining 𝜑(𝑛)
is as hard as obtaining 𝑝 and 𝑞 by showing that given 𝜑(𝑛), the prime factors 𝑝 and 𝑞 can be computed efficiently.

Exercise 295 The ElGamal encryption scheme relies on the hardness of the discrete logarithm problem to perform
encryption, like Diffie-Hellman does for key exchange. The following describes how Bob can send an encrypted
message to Alice using ElGamal. Assume that a large prime 𝑝 and generator 𝑔 ofZ𝑝 have already been established.

• Alice chooses a private key 𝑎 ∈ Z+
𝑝 , computes 𝐴 ≡ 𝑔𝑎 (mod 𝑝) as her public key, and sends 𝐴 to Bob.

• Bob chooses a private key 𝑏 ∈ Z+
𝑝 , computes 𝐵 ≡ 𝑔𝑏 (mod 𝑝) as his public key, and sends 𝐵 to Alice.

• Alice and Bob both compute the shared key 𝑘 ≡ 𝑔𝑎𝑏 (mod 𝑝).

• Bob encrypts the message 𝑚 as

𝑐 ≡ 𝑚 · 𝑘 ≡ 𝑚 · 𝑔𝑎𝑏 (mod 𝑝)

and sends the ciphertext 𝑐 to Alice.

a) Show how Alice can recover 𝑚 from the information she knows (𝑝, 𝑔, 𝑎, 𝐴, 𝐵, 𝑘, 𝑐).

b) Demonstrate that if Eve has an efficient algorithm for recovering 𝑚 from what she can observe (𝑝, 𝑔, 𝐴, 𝐵,
𝑐), she also has an efficient method for breaking Diffie-Hellman key exchange.

25.1 RSA Signatures

Thus far, we have focused on the privacy and confidentiality provided by encryption protocols. We briefly consider
authentication and integrity, in the form of a signature scheme using RSA. The goal here is not to keep a secret – rather,
given a message, we want to verify the identity of the author as well as the integrity of its contents. The way we do
so is to essentially run the RSA encryption protocol “backwards” – rather than having Bob run the encryption process
on a plaintext message and Alice the decryption on a ciphertext, we will have Alice apply the decryption function to a
message she wants to sign, and Bob will apply the encryption function to the resulting signed message.

Protocol 296 (RSA Signature) Suppose Alice wishes to send a message 𝑚 to Bob and allow Bob to verify that
he receives the intended message. As with the RSA encryption protocol (page 258), Alice computes (𝑒, 𝑛) as her
public key and sends them to Bob, and she computes 𝑑 ≡ 𝑒−1 (mod 𝜑(𝑛)) as her private key. Then:

• Alice computes

𝑠 ≡ 𝑚𝑑 (mod 𝑛)

and sends 𝑚 and 𝑠 to Bob.

• Bob computes

𝑚′ ≡ 𝑠𝑒 (mod 𝑛)

and verifies that the result is equal to 𝑚.

The correctness of this scheme follows from the correctness of RSA encryption; we have:

𝑚′ ≡ 𝑠𝑒 (mod 𝑛)

≡ 𝑚𝑒𝑑 (mod 𝑛)

≡ 𝑚1+𝑘𝜑(𝑛) (mod 𝑛)

≡ 𝑚 (mod 𝑛)

25.1. RSA Signatures 260

Foundations of Computer Science, Release 0.5

Thus, if 𝑚′ = 𝑚, Bob can be assured that Alice sent the message – only she knows 𝑑, so only she can efficiently
compute 𝑚𝑑 (mod 𝑛). In essence, the pair 𝑚,𝑚𝑑 (mod 𝑛) acts as a certificate (page 140) that the sender knows the
secret key 𝑑.

In practice, this scheme needs a few more details to avoid the possibility of spoofing, or having someone else send a
message purporting to be from Alice. We leave these details as an exercise.

Exercise 297 The RSA signature scheme as described above is subject to spoofing – it is possible for a third party
to produce a pair 𝑚, 𝑠 such that 𝑠 ≡ 𝑚𝑑 (mod 𝑛).

a) Describe one way in which someone other than Alice can produce a matching pair 𝑚,𝑚𝑑 (mod 𝑛).

b) Propose a modification to the scheme that addresses this issue.

Hint: Think about adding some form of padding to the message to assist in verifying that Alice was the
author.

25.2 Quantum Computers and Cryptography

The abstraction of standard Turing machines (page 61) does not seem to quite capture the operation of quantum com-
puters, but there are other models such as quantum Turing machines94 and quantum circuits95 that do so. The standard
Church Turing thesis (page 84) still applies – anything that can be computed on a quantum computer can be computed
on a Turing machine. However, a quantum computer is a probabilistic model, so the extended Church-Turing thesis
(page 139) does not apply – we do not know whether quantum computers can solve problems more efficiently than
so-called classical computers. There are problems that are known to have efficient probabilistic algorithms on quan-
tum computers but do not have known, efficient probabilistic algorithms on classical computers. Discrete logarithm
and integer factorization, the problems that are core to Diffie-Hellman and RSA, are two such problems; they are both
efficiently solvable on quantum computers by Shor’s algorithm96.

In practice, scalable quantum computers pose significant implementation challenges, and they are a long way from
posing a risk to the security of Diffie-Hellman and RSA. As of this writing, the largest number known to have been
factored by Shor’s algorithm on a quantum computer is 35, which was accomplished in 2019. This follows previous
records of 21 in 2012 and 15 in 2001. Compare this to factorization on classical computers, where the 829-bit RSA-
250 number97 was factored in 2020. Typical keys currently used in implementations of RSA have at least 2048 bits,
and both quantum and classical computers are far from attacking numbers of this size. Regardless, post-quantum
cryptograpy98 is an active area of research, so that if quantum computers do eventually become powerful enough to
attack Diffie-Hellman or RSA, other cryptosystems can be used that are more resilient against quantum attacks.

In complexity-theoretic terms, the decision versions of discrete logarithm and integer factorization are in the complexity
class BQP, which is the quantum analogue of BPP; in other words, BQP is the class of languages that have efficient
two-sided-error randomized algorithms (page 283) on quantum computers. We know that

BPP ⊆ BQP

but we do not know whether this containment is strict. And like the relationship betweenBPP andNP, most complexity
theorists do not believe that BQP contains all of NP. Neither the decision versions of discrete logarithm nor of integer
factorization are believed to be NP-complete – they are believed (but not proven) to be NP-Intermediate, i.e. in the
class NPI of languages that are in NP but neither in P nor NP-complete. It is known that if P ̸= NP, then the class NPI
is not empty.

On the other hand, if P = NP, then computational security is not possible – such security relies on the existence of
hard problems that are efficiently verifiable, and no such problem exists if P = NP.

94 https://en.wikipedia.org/wiki/Quantum_Turing_machine
95 https://en.wikipedia.org/wiki/Quantum_circuit
96 https://en.wikipedia.org/wiki/Shor%27s_algorithm
97 https://en.wikipedia.org/wiki/RSA_numbers#RSA-250
98 https://en.wikipedia.org/wiki/Post-quantum_cryptography

25.2. Quantum Computers and Cryptography 261

https://en.wikipedia.org/wiki/Quantum_Turing_machine
https://en.wikipedia.org/wiki/Quantum_circuit
https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/RSA_numbers#RSA-250
https://en.wikipedia.org/wiki/RSA_numbers#RSA-250
https://en.wikipedia.org/wiki/Post-quantum_cryptography
https://en.wikipedia.org/wiki/Post-quantum_cryptography

Part VI

Supplemental Material

262

CHAPTER

TWENTYSIX

SUPPLEMENTAL: ALGORITHMS

26.1 Non-master-theorem Recurrences

Recurrences that do not match the pattern required by the master theorem (page 14) can often be manipulated to do so
using substitutions. We take a look at two examples here.

Example 298 Consider the following recurrence:

𝑇 (𝑛) = 2𝑇 (
𝑛

2
) +𝑂(𝑛 log 𝑛)

While we solved this recurrence above using the master theorem with log factors, we can also do so through
substitution. We perform the substitution 𝑆(𝑛) = 𝑇 (𝑛)/ log 𝑛 to get the following:

𝑆(𝑛) log 𝑛 = 2𝑆(
𝑛

2
) log

𝑛

2
+𝑂(𝑛 log 𝑛)

= 2𝑆(
𝑛

2
)(log 𝑛− log 2) +𝑂(𝑛 log 𝑛)

= 2𝑆(
𝑛

2
)(log 𝑛− 1) +𝑂(𝑛 log 𝑛)

To get this, we substituted 𝑇 (𝑛) = 𝑆(𝑛) log 𝑛 and 𝑇 (𝑛/2) = 𝑆(𝑛/2) log(𝑛/2) in the first step. Since log 𝑛−1 ≤
log 𝑛, we can turn the above into the inequality:

𝑆(𝑛) log 𝑛 ≤ 2𝑆(
𝑛

2
) log 𝑛+𝑂(𝑛 log 𝑛)

We can then divide out the log 𝑛 from each term to get:

𝑆(𝑛) ≤ 2𝑆(
𝑛

2
) +𝑂(𝑛)

We now have something that is in the right form for applying the master theorem. Even though it is an inequality
rather than an equality, because we are computing an upper bound, we can still apply the master theorem. We
have 𝑘/𝑏𝑑 = 2/21 = 1, so we get:

𝑆(𝑛) = 𝑂(𝑛 log 𝑛)

We can then undo the substitution 𝑆(𝑛) = 𝑇 (𝑛)/ log 𝑛 to get:

𝑇 (𝑛) = 𝑆(𝑛) log 𝑛 = 𝑂(𝑛 log 𝑛) log 𝑛

= 𝑂(𝑛 log2 𝑛)

263

Foundations of Computer Science, Release 0.5

Exercise 299 In Example 298, we assumed that if 𝑓(𝑛) = 𝑂(log 𝑛), then 𝑓(𝑛)/ log 𝑛 = 𝑂(1). Prove from the
definition of big-O that this holds.

26.1. Non-master-theorem Recurrences 264

CHAPTER

TWENTYSEVEN

SUPPLEMENTAL: COMPUTABILITY

27.1 Applying Rice’s Theorem

Rice’s theorem (page 130) gives us a third tool for proving the undecidability of a language, in addition to the direct
proof we saw for 𝐿ACC and Turing reduction from a known undecidable language. Given a language 𝐿, we need to do
the following to apply Rice’s theorem:

1. Define a semantic property P, i.e. a set of languages.

2. Show that 𝐿P = 𝐿. In other words, we show that the language

𝐿P = {⟨𝑀⟩ : 𝑀 is a program and 𝐿(𝑀) ∈ P}

consists of the same set of elements as 𝐿.

3. Show that P is nontrivial. This requires demonstrating that there is some recognizable language 𝐴 ∈ P and
another recognizable language 𝐵 /∈ P.

We can then conclude by Rice’s theorem that 𝐿 is undecidable.

Example 300 Define 𝐿Σ* as follows:

𝐿Σ* = {⟨𝑀⟩ : 𝑀 is a program that accepts all inputs}

We use Rice’s theorem to show that 𝐿Σ* is undecidable. Let P be the semantic property:

P = {Σ*}

The property contains just a single language. Observe that 𝑀 accepts all inputs exactly when 𝐿(𝑀) = Σ*. Thus,
we can express 𝐿Σ* as:

𝐿Σ* = {⟨𝑀⟩ : 𝑀 is a program and 𝐿(𝑀) = Σ*}

This is the exact definition of 𝐿P, so we have 𝐿Σ* = 𝐿P.

We proceed to show that there is a recognizable language in P and another not in P. Σ* is a recognizable language
in P – we can recognize Σ* with a program that accepts all inputs. ∅ is a recognizable language not in P – we can
recognize ∅ with a program that rejects all inputs. Thus, P is nontrivial.

Since P is nontrivial, by Rice’s theorem, 𝐿P is undecidable. Since 𝐿P = 𝐿Σ* , 𝐿Σ* is undecidable.

Example 301 Define 𝐿A376 as follows:

𝐿A376 = {⟨𝑀⟩ : 𝑀 is a program that accepts all strings of length less than 376}

265

Foundations of Computer Science, Release 0.5

We use Rice’s theorem to show that 𝐿A376 is undecidable. Define 𝑆376 to be the set of all strings whose length is
less than 376:

𝑆376 = {𝑥 ∈ Σ* : |𝑥| < 376}

Then let P be the semantic property:

P = {𝐿 ⊆ Σ* : 𝑆376 ⊆ 𝐿}

The property contains all languages that themselves contain all of 𝑆376. If 𝑀 accepts all inputs of length less than
376, then 𝑆376 ⊆ 𝐿(𝑀). We thus have:

𝐿A376 = {⟨𝑀⟩ : 𝑀 is a program that accepts all strings of length less than 376}
= {⟨𝑀⟩ : 𝑀 is a program and 𝑆376 ⊆ 𝐿(𝑀)}
= {⟨𝑀⟩ : 𝑀 is a program and 𝐿(𝑀) ∈ P}
= 𝐿P

We proceed to show that there is a recognizable language in P and another not in P. Σ* is a recognizable language
in P – a program that recognizes Σ* accepts all inputs, including all those of length less than 376. ∅ is a recog-
nizable language not in P – a program that recognizes ∅ does not accept any inputs, including those of length less
than 376. Thus, P is nontrivial.

Since P is nontrivial, by Rice’s theorem, 𝐿P is undecidable. Since 𝐿P = 𝐿A376, 𝐿A376 is undecidable.

Example 302 Define 𝐿DEC as follows:

𝐿DEC = {⟨𝑀⟩ : 𝑀 is a program and 𝐿(𝑀) is decidable}

We use Rice’s theorem to show that 𝐿DEC is undecidable. Let P be the semantic property:

P = {𝐿 ⊆ Σ* : 𝐿 is decidable}

The property contains all decidable languages, and 𝐿DEC = 𝐿P.

We proceed to show that there is a recognizable language in P and another not in P. Σ* is a recognizable language
inP – we can both decide and recognizeΣ* with a program that accepts all inputs. 𝐿ACC is a recognizable language
not in P – we know that 𝐿ACC is undecidable, and it is recognized by the universal Turing machine 𝑈 . Thus, P is
nontrivial.

Since P is nontrivial, by Rice’s theorem, 𝐿P is undecidable. Since 𝐿P = 𝐿DEC, 𝐿DEC is undecidable.

Rice’s theorem is not applicable to all undecidable languages. Some examples of languages where Rice’s theorem
cannot be applied are:

• The language

𝐿REJ = {(⟨𝑀⟩, 𝑥) : 𝑀 is a program and 𝑀 rejects 𝑥}

does not consist of codes of programs on their own, so we cannot define a property P such that 𝐿P = 𝐿REJ. We
must show undecidability either directly or through a Turing reduction.

• The language

𝐿SmallTM = {⟨𝑀⟩ : 𝑀 has fewer than 100 states}

is concerned with the structure of 𝑀 rather than its language 𝐿(𝑀). This is a syntactic property rather than a
semantic property, and it is decidable by examining the code of 𝑀 .

27.1. Applying Rice’s Theorem 266

Foundations of Computer Science, Release 0.5

• The languages

𝐿R376 = {⟨𝑀⟩ : 𝑀 is a program that rejects all strings of length less than 376}
𝐿L376 = {⟨𝑀⟩ : 𝑀 is a program that loops on all strings of length less than 376}

do not have a direct match with a semantic property. In both cases, 𝐿(𝑀) ∩ 𝑆376 = ∅, but the two languages
𝐿R376 and 𝐿L376 are clearly distinct and non-overlapping. In fact, a program 𝑀1 that rejects all strings is in
𝐿R376 while a program 𝑀2 that loops on all strings is in 𝐿L376, but both programs have the same language
𝐿(𝑀1) = 𝐿(𝑀2) = ∅. Thus, both 𝐿R376 and 𝐿L376 contain some programs and exclude others with the same
language, so it is impossible to define a property P such that 𝐿P = 𝐿R376 or 𝐿P = 𝐿L376.

However, both 𝐿R376 and 𝐿L376 are actually undecidable. While we cannot apply Rice’s theorem, we can show
undecidability via a Turing reduction.

Thus, Rice’s theorem allows us to take a shortcut for languages of the right format, but we still need the previous tools
we saw for languages that do not follow the structure required by the theorem.

27.2 Computable Functions and Kolmogorov Complexity

Previously, we only considered decision problems, for which the answer is either yes or no. We formalized such a
problem as a language 𝐿 over an alphabet Σ, where 𝐿 is the set of all yes instances. Then solving a decision problem
means being able to determine whether 𝑥 ∈ 𝐿 for all inputs 𝑥 ∈ Σ*.

We can define a function 𝑓𝐿 : Σ* → {0, 1} corresponding to the language 𝐿:

𝑓𝐿(𝑥) =

{︃
1 if 𝑥 ∈ 𝐿

0 if 𝑥 /∈ 𝐿

A program that decides 𝐿 also computes the function 𝑓𝐿, meaning that it determines the value 𝑓𝐿(𝑥) for any input 𝑥.
For an arbitrary function 𝑓 : Σ* → Σ*, we say that 𝑓 is computable if there exists a program that outputs 𝑓(𝑥) given
the input 𝑥.

Computability is a generalization of decidability for arbitrary functions. Decidability only applies to functions whose
codomain is {0, 1}, while computability applies to any function whose codomain is comprised of finite-length strings.

In the Turing-machine model, we represent a result in {0, 1} with specific reject and accept states. For a function whose
codomain is Σ*, we cannot define a new state for each element in Σ* – there are infinitely many elements in Σ*, but
the set of states 𝑄 for a Turing machine must be finite. Instead, we consider a Turing machine to output the string 𝑓(𝑥)
if it reaches a final state with 𝑓(𝑥) written on its tape.

For a concrete programming model, we rely on whatever convention is used in that model for output, such as returning
a value from a function or writing something to a standard output stream. In pseudocode, we typically just state “output
𝑤” or “return 𝑤” as an abstraction of outputting the value 𝑤.

Equivalence of Functional and Decision Models

We can actually turn a functional problem into a decision one by recasting it as a series of yes/no questions. There
are many ways to do so, and the following is one concrete way.

Let 𝑓 : Σ* → Σ* be a computable function. We can define a language corresponding to 𝑓 as follows:

𝐿𝑓 = {⟨𝑥, 𝑖, 𝜎⟩ ∈ Σ* × N× Σ : |𝑓(𝑥)| ≥ 𝑖 and the 𝑖th symbol of 𝑓(𝑥) is 𝜎} .

In other words, ⟨𝑥, 𝑖, 𝜎⟩ ∈ 𝐿𝑓 when 𝑓(𝑥) has at least 𝑖 symbols, and the 𝑖th symbol is 𝜎.

Given a decider 𝐷 for 𝐿𝑓 , we can construct a program 𝐶 that computes 𝑓 as follows:

27.2. Computable Functions and Kolmogorov Complexity 267

Foundations of Computer Science, Release 0.5

function 𝐶(𝑥)
for 𝑖 = 1, 2, . . . do

for all 𝜎 ∈ Σ do
if 𝐷(⟨𝑥, 𝑖, 𝜎⟩) accepts then

print 𝜎
if no symbol was written in the last loop then halt

This machine queries 𝐷 for each possible symbol at position 𝑖 of 𝑓(𝑥), printing the correct symbols one by one. It
halts when it reaches an 𝑖 for which there is no symbol.

To complete our demonstration of equivalence, we show how to construct 𝐷 given a program 𝐶 that computes 𝑓 :

function 𝐷(𝑥, 𝑖, 𝜎)
if |𝐶(𝑥)| ≥ 𝑖 and the 𝑖th symbol of 𝐶(𝑥) is 𝜎 then accept
reject

This equivalence shows that we do not lose any power by restricting ourselves to decision problems, as we have done
until this point.

Given any alphabet Σ, there are uncountably many functions 𝑓 : Σ* → Σ*. Since a Turing machine 𝑀 can compute
at most one function and the set of Turing machines is countable, there are uncountably many uncomputable functions
over any alphabet Σ.

Exercise 303 Use diagonalization to show that the set of functions 𝑓 : Σ* → Σ* is uncountable when Σ is the
unary alphabet Σ = {1}.

As a specific example of an uncomputable function, consider the problem of data compression. Given a string 𝑤, we
would like to encode its data as a shorter string 𝑤𝑐 that still allows us to recover the original string 𝑤. This is known
as lossless compression, and many algorithms for lossless compression are in use including the GIF format for images,
ZIP and GZIP for arbitrary files, and so on. (There are lossy formats as well such as JPEG and MP3, where some
information is lost as part of the compression process.) It can be demonstrated by a counting argument that any lossless
compression algorithm has uncompressible strings for all lengths 𝑛 ≥ 1, where the result of compressing the string is
no shorter than the original string.

Exercise 304 Let 𝐶 be an arbitrary compression algorithm for binary strings. Define 𝐶(𝑤) to be the result of
compressing the string 𝑤, where 𝑤 ∈ {0, 1}* and 𝐶(𝑤) ∈ {0, 1}*.

a) Prove that for all 𝑛 ≥ 1, there are at most 2𝑛 − 1 binary strings 𝑤 such that the corresponding compressed
string 𝐶(𝑤) has length strictly less than 𝑛.

b) Conclude that for all 𝑛 ≥ 1, there exists some uncompressible string 𝑤 of length 𝑛 such that 𝐶(𝑤) has
length at least 𝑛.

We specifically consider “compression by program,” where we compress a string 𝑤 by writing a program that, given
an empty input, outputs the string 𝑤. Assume we are working in a concrete programming language 𝑈 . We define the
Kolmogorov complexity of 𝑤 in language 𝑈 as the length of the shortest program in 𝑈 that outputs 𝑤, given an empty
string. We denote this by 𝐾𝑈 (𝑤), and we have:

𝐾𝑈 (𝑤) = min{|⟨𝑀⟩| : 𝑀 is a program in language 𝑈 that outputs 𝑤, given an empty input}

Observe that 𝐾𝑈 (𝑤) = 𝑂(|𝑤|) for any 𝑤 ∈ {0, 1}* – we can just hardcode the string 𝑤 in the program itself. For
instance, the following is a C++ program that outputs 𝑤 = 0101100101:

27.2. Computable Functions and Kolmogorov Complexity 268

Foundations of Computer Science, Release 0.5

#include <iostream>

int main() {
std::cout << "0101100101";

}

To output a different value 𝑤′, we need only swap out the hardcoded string 𝑤 for 𝑤′. The total length of the program
that has a string hardcoded is a constant number of symbols, plus the length of the desired output string itself. Thus,
there exists a program of length 𝑂(|𝑤|) that outputs 𝑤, so the shortest program that does so has length no more than
𝑂(|𝑤|), and 𝐾C++(𝑤) = 𝑂(|𝑤|). The same is true for any other programming language 𝑈 .

For some strings 𝑤, we can define a much shorter program that outputs 𝑤. Consider 𝑤 = 0𝑚 for some large number
𝑚, meaning that 𝑤 consists of 𝑚 zeros. We can define a short program to output 𝑤 as follows:

#include <iostream>

int main() {
for (int i = 0; i < m; ++i)
std::cout << "0";

}

As a concrete example, let 𝑚 = 1000. The program that hardcodes 𝑤 = 0𝑚 would have a length on the order of 1000.
But the program that follows the looping pattern above is:

#include <iostream>

int main() {
for (int i = 0; i < 1000; ++i)
std::cout << "0";

}

Here, we hardcode 𝑚 rather than 0𝑚. The former has length 𝑂(log𝑚) (for 𝑚 = 1000, four digits in decimal or ten
in binary), as opposed to the latter that has length 𝑚. Thus, we achieve a significant compression for 𝑤 = 0𝑚, and we
have 𝐾C++(0

𝑚) = 𝑂(log𝑚).

We now demonstrate that the function 𝐾𝑈 (𝑤) is uncomputable for any programming language 𝑈 . Assume for the
purposes of contradiction that 𝐾𝑈 (𝑤) is computable. For a given length 𝑛, we define the program 𝑄𝑛 as follows:

function 𝑄𝑛

for all 𝑥 ∈ {0, 1}𝑛 do
if 𝐾𝑈 (𝑥) ≥ 𝑛 then return 𝑥

As mentioned previously, any compression algorithm has uncompressible strings for every length 𝑛 ≥ 1. Thus, 𝑄𝑛

will find a string 𝑤𝑛 such that 𝐾𝑈 (𝑤𝑛) ≥ 𝑛, output it, and halt.

Since𝑄𝑛 outputs𝑤𝑛 given an empty input, by definition, we have𝐾𝑈 (𝑤𝑛) ≤ |𝑄𝑛|; that is, the Kolmogorov complexity
of 𝑤𝑛 in language 𝑈 is no more than the length of 𝑄𝑛, since 𝑄𝑛 itself is a program that outputs 𝑤𝑛. How long is 𝑄𝑛?
The only part of 𝑄𝑛 that depends on 𝑛 is the hardcoded value 𝑛 in the loop that iterates over {0, 1}𝑛. As we saw before,
it takes only 𝑂(log 𝑛) symbols to encode a value 𝑛. Thus, we have |𝑄𝑛| = 𝑂(log 𝑛).

We have arrived at a contradiction: we have demonstrated that 𝐾𝑈 (𝑤𝑛) ≥ 𝑛 and also that 𝐾𝑈 (𝑤𝑛) ≤ |𝑄𝑛| =
𝑂(log 𝑛). These two conditions cannot be simultaneously satisfied. Since we have reached a contradiction, our original
assumption that 𝐾𝑈 (𝑤) is computable must be false, and 𝐾𝑈 (𝑤) is an uncomputable function.

27.2. Computable Functions and Kolmogorov Complexity 269

CHAPTER

TWENTYEIGHT

SUPPLEMENTAL: RANDOMNESS

28.1 Primality Testing

A key component of many cryptography (page 242) algorithms is finding large prime numbers, with hundreds or
even thousands of digits. A typical approach is to randomly choose a large number and then apply a primality test to
determine whether it is prime – the prime number theorem99 states that approximately 1/𝑚 of the 𝑚-bit numbers are
prime, so we only expect to check 𝑚 numbers before finding one that is prime100. As long as the primality test itself is
efficient with respect to 𝑚, the expected time to find a prime number with 𝑚 bits is polynomial in 𝑚.

Formally, we wish to decide the following language:

PRIMES = {𝑚 ∈ N : 𝑚 is prime} .

A positive integer𝑚 ≥ 2 is prime if it has no positive divisors other than 1 and itself. (For technical reasons, the number
1 is not considered prime, although its only positive divisors are 1 and itself, which are the same.) Equivalently, it has
no divisor between 2 and 𝑚− 1, inclusive.

Is the language PRIMES in P? Let us consider the following simple algorithm to decide the language:

Input: a positive integer 𝑚 ≥ 2
Output: whether 𝑚 is prime

function IsPrime(𝑚)
for 𝑖 = 2 to 𝑚− 1 do

if 𝑚 is divisible by 𝑖 then reject
accept

This algorithm does 𝑂(𝑚) trial divisions. Is this efficient? The size of the input 𝑚 is the number of bits required to
represent 𝑚, which is 𝑂(log𝑚). Thus, the number of operations is 𝑂(𝑚) = 𝑂(2log𝑚), which is exponential in the
size of 𝑚.

We can improve the algorithm by observing that if 𝑚 has a factor within the interval [2,𝑚 − 1], it must have a factor
between 2 and ⌊√𝑚⌋ (inclusive) – because the product of two or more larger numbers is larger than 𝑚. Thus, we need
only iterate up to ⌊√𝑚⌋:

function IsPrime(𝑚)
for 𝑖 = 2 to ⌊√𝑚⌋ do

if 𝑚 is divisible by 𝑖 then reject
accept

99 https://en.wikipedia.org/wiki/Prime_number_theorem
100 This follows from the fact that the expected value of a geometric distributionPage 270, 101 with parameter 𝑝 is 1/𝑝.
101 https://en.wikipedia.org/wiki/Geometric_distribution

270

https://en.wikipedia.org/wiki/Prime_number_theorem
https://en.wikipedia.org/wiki/Geometric_distribution

Foundations of Computer Science, Release 0.5

This algorithm does 𝑂(
√
𝑚) trial divisions. However, this still is not polynomial; we have:

𝑂(
√
𝑚) = 𝑂(𝑚1/2) = 𝑂(2(log𝑚)/2) .

To be efficient, a primality-testing algorithm must have runtime 𝑂(log𝑘 𝑚) for some constant 𝑘. Neither of the algo-
rithms above meet this threshold.

In fact, there is a known efficient algorithm for primality testing, the AKS primality test102. Thus, it is indeed the case
that PRIMES ∈ P. However, this algorithm is somewhat complicated, and its running time is high enough to preclude
it from being used in practice. Instead, we consider a randomized primality test that is efficient and works well in
practice for most inputs. The algorithm we construct relies on the extended Fermat’s little theorem.

Theorem 305 (Extended Fermat’s Little Theorem) Let 𝑛 ∈ N be a natural number such that 𝑛 ≥ 2. Let 𝑎 be
a witness in the range 1 ≤ 𝑎 ≤ 𝑛− 1. Then:

• If 𝑛 is prime, then 𝑎𝑛−1 ≡ 1 (mod 𝑛) for any witness 𝑎.

• If 𝑛 is composite and 𝑛 is not a Carmichael number, then 𝑎𝑛−1 ≡ 1 (mod 𝑛) for at most half the witnesses
1 ≤ 𝑎 ≤ 𝑛− 1.

We postpone discussion of Carmichael numbers for the moment. Instead, we take a look at some small cases of
composite numbers to see that the extended Fermat’s little theorem holds. We first consider 𝑛 = 6. We have:

𝑎 = 1 : 15 ≡ 1 (mod 6)
𝑎 = 2 : 25 = 32 = 2 + 5 · 6 ≡ 2 (mod 6)
𝑎 = 3 : 35 = 243 = 3 + 40 · 6 ≡ 3 (mod 6)
𝑎 = 4 : 45 = 1024 = 4 + 170 · 6 ≡ 4 (mod 6)
𝑎 = 5 : 55 = 3125 = 5 + 520 · 6 ≡ 5 (mod 6)

We see that 𝑎𝑛−1 ≡ 1 (mod 𝑛) for only the single witness 𝑎 = 1. Similarly, we consider 𝑛 = 9:

𝑎 = 1 : 18 ≡ 1 (mod 9)
𝑎 = 2 : 28 = 256 = 4 + 28 · 9 ≡ 4 (mod 9)
𝑎 = 3 : 38 = 6561 = 0 + 729 · 9 ≡ 0 (mod 9)
𝑎 = 4 : 48 = 65536 = 7 + 7281 · 9 ≡ 7 (mod 9)
𝑎 = 5 : 58 = 390625 = 7 + 43402 · 9 ≡ 7 (mod 9)
𝑎 = 6 : 68 = 1679616 = 0 + 186624 · 9 ≡ 0 (mod 9)
𝑎 = 7 : 78 = 5764801 = 4 + 640533 · 9 ≡ 4 (mod 9)
𝑎 = 8 : 88 = 16777216 = 1 + 1864135 · 9 ≡ 1 (mod 9)

Here, there are two witnesses 𝑎 where 𝑎𝑛−1 ≡ 1 (mod 𝑛), out of eight total. Finally, we consider 𝑛 = 7:

𝑎 = 1 : 16 ≡ 1 (mod 7)
𝑎 = 2 : 26 = 64 = 1 + 9 · 7 ≡ 1 (mod 7)
𝑎 = 3 : 36 = 729 = 1 + 104 · 7 ≡ 1 (mod 7)
𝑎 = 4 : 46 = 4096 = 1 + 585 · 7 ≡ 1 (mod 7)
𝑎 = 5 : 56 = 15625 = 1 + 2232 · 7 ≡ 1 (mod 7)
𝑎 = 6 : 66 = 46656 = 1 + 6665 · 7 ≡ 1 (mod 7)

Since 7 is prime, we have 𝑎𝑛−1 ≡ 1 (mod 𝑛) for all witnesses 𝑎.

The extended Fermat’s little theorem leads directly to a simple, efficient randomized algorithm for primality testing.
This Fermat primality test is as follows:

102 https://en.wikipedia.org/wiki/AKS_primality_test

28.1. Primality Testing 271

https://en.wikipedia.org/wiki/AKS_primality_test

Foundations of Computer Science, Release 0.5

function FermatTest(𝑚)
choose uniformly random 𝑎 such that 1 ≤ 𝑎 ≤ 𝑚− 1
if 𝑎𝑚−1 ≡ 1 (mod 𝑚) then accept
reject

The modular exponentiation in this algorithm can be done with 𝑂(log𝑚) multiplications using a divide and conquer
(page 13) strategy, and each multiplication can be done efficiently. Thus, this algorithm is polynomial with respect to
the size of 𝑚.

As for correctness, we have:

• If 𝑚 is prime, then the algorithm always accepts 𝑚. In other words:

Pr[the Fermat test accepts 𝑚] = 1

• If 𝑚 is composite and not a Carmichael number, then the algorithm rejects 𝑚 with probability at least 1
2 . In other

words:

Pr[the Fermat test rejects 𝑚] ≥ 1

2

Thus, if the algorithm accepts 𝑚, we can be fairly confident that 𝑚 is prime. And as we will see shortly, we can repeat
the algorithm to obtain higher confidence that we get the right answer.

We now return to the problem of Carmichael numbers. A Carmichael number is a composite number 𝑛 such that
𝑎𝑛−1 ≡ 1 (mod 𝑛) for all witnesses 𝑎 that are relatively prime to 𝑛, i.e. gcd(𝑎, 𝑛) = 1. This implies that for a
Carmichael number, the Fermat test reports with high probability that the number is prime, despite it being composite.
We call a number that passes the Fermat test with high probability a pseudoprime, and the Fermat test is technically a
randomized algorithm for deciding the following language:

PSEUDOPRIMES =

{︃
𝑚 ∈ N : 𝑎𝑚−1 mod 𝑚 ≡ 1 for at least half

the witnesses 1 ≤ 𝑎 ≤ 𝑚− 1

}︃
Carmichael numbers are much rarer than prime numbers, so for many applications, the Fermat test is sufficient to
determine with high confidence that a randomly chosen number is prime. On the other hand, if the number is chosen
by an adversary, then the Fermat test is unsuitable, and a more complex randomized algorithm such as the Miller-Rabin
primality test must be used instead.

28.1.1 The Miller-Rabin Test

The Miller-Rabin test is designed around the fact that for prime 𝑚, the only square roots of 1 modulo 𝑚 are -1 and 1.
More specifically, if 𝑥 is a square root of 1 modulo 𝑚, we have

𝑥2 ≡ 1 (mod 𝑚)

By definition of modular arithmetic (page 243), this means that

𝑥2 − 1 = 𝑘𝑚

for some integer 𝑘 (i.e. 𝑚 evenly divides the difference of 𝑥2 and 1). We can factor 𝑥2 − 1 to obtain:

(𝑥+ 1)(𝑥− 1) = 𝑘𝑚

When 𝑚 is composite, so that 𝑚 = 𝑝𝑞 for integers 𝑝, 𝑞 > 1, then it is possible for 𝑝 to divide 𝑥 + 1 and 𝑞 to divide
𝑥 − 1, in which case 𝑝𝑞 = 𝑚 divides their product (𝑥 + 1)(𝑥 − 1). However, when 𝑚 is prime, the only way for the

28.1. Primality Testing 272

Foundations of Computer Science, Release 0.5

equation to hold is if 𝑚 divides either 𝑥 + 1 or 𝑥 − 1; otherwise, the prime factorization of (𝑥 + 1)(𝑥 − 1) does not
contain 𝑚, and by the fundamental theorem of arithmetic103, it cannot be equal to a number whose prime factorization
contains 𝑚104. Thus, we have either 𝑥+1 = 𝑎𝑚 for some integer 𝑎, or 𝑥− 1 = 𝑏𝑚 for some 𝑏 ∈ Z. The former gives
us 𝑥 ≡ −1 (mod 𝑚), while the latter results in 𝑥 ≡ 1 (mod 𝑚)., This, if 𝑚 is prime and 𝑥2 ≡ 1 (mod 𝑚), then
either 𝑥 ≡ 1 (mod 𝑚) or 𝑥 ≡ −1 (mod 𝑚).

The Miller-Rabin test starts with the Fermat test: choose a witness 1 ≤ 𝑎 ≤ 𝑚 − 1 and check whether 𝑎𝑚−1 ≡ 1
(mod 𝑚). If this does not hold, then 𝑚 fails the Fermat test and therefore is not prime. If it does indeed hold, then the
test checks the square root 𝑎 1

2 (𝑚−1) of 𝑎𝑚−1 to see if it is 1 or -1. If it is 1, the test checks the square root 𝑎 1
4 (𝑚−1) of

𝑎
1
2 (𝑚−1) to see if it is 1 or -1, and so on. The termination conditions are as follows:

• The test finds a square root of 1 that is not -1 or 1. By the reasoning above, 𝑚 must be composite.

• The test finds a square root of 1 that is -1. The reasoning above only holds for square roots of 1, so the test cannot
continue by computing the square root of -1. In this case, 𝑚 may be prime or composite.

• The test reaches some 𝑟 for which 1/2𝑟 · (𝑚− 1) is no longer an integer. Then it cannot compute 𝑎 to this power
modulo 𝑚. In this case, 𝑚 may be prime or composite.

To compute these square roots, we first extract powers of 2 from the number 𝑚− 1 (which is even for odd 𝑚, the cases
of interest):

function ExtractPowersOf2(𝑥)
if 𝑥 is odd then return (𝑥, 0)

(𝑑, 𝑠′) = ExtractPowersOf2(𝑥/2) return (𝑑, 𝑠′ + 1)

So, ExtractPowersOf2(𝑚− 1) computes 𝑑 and 𝑠 such that

𝑚− 1 = 2𝑠𝑑

where gcd(𝑑, 2) = 1. Then we have 𝑎2
𝑠−1𝑑 is the square root of 𝑎2

𝑠𝑑, since

(𝑎2
𝑠−1𝑑)2 = 𝑎2·2

𝑠−1𝑑 = 𝑎2
𝑠𝑑

The full Miller-Rabin algorithm is as follows:

function MillerRabin(𝑚)
choose uniformly random 1 ≤ 𝑎 ≤ 𝑚− 1
compute 𝑠, 𝑑 such that 𝑚− 1 = 2𝑠𝑑 and 𝑑 is odd
compute 𝑎𝑑, 𝑎2𝑑, 𝑎4𝑑, . . . , 𝑎2

𝑠−1𝑑, 𝑎2
𝑠𝑑

if 𝑎2𝑠𝑑 ̸≡ 1 (mod 𝑚) then reject
for 𝑡 = 𝑠− 1 down to 0 do

if 𝑎2𝑡𝑑 ≡ −1 (mod 𝑚) then accept
else if 𝑎2𝑡𝑑 ̸≡ 1 (mod 𝑚) then reject

accept

This algorithm is efficient: 𝑎𝑑 can be computed using 𝑂(log 𝑑) = 𝑂(log𝑚) multiplications, and it takes another
𝑂(log𝑚) multiplications to compute 𝑎2𝑑, 𝑎4𝑑, . . . , 𝑎2

𝑠𝑑 since 𝑠 = 𝑂(log𝑚). Each multiplication is efficient as it is
done modulo 𝑚, so the entire algorithm takes polynomial time in the size of 𝑚.

As for correctness, we have:

• If 𝑚 is prime, then the algorithm accepts 𝑚 with probability 1.
103 https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
104 Euclid’s lemmaPage 273, 105 more directly states that if 𝑚 is prime and 𝑚 divides a product 𝑎𝑏, then 𝑚 must divide either 𝑎 or 𝑏.
105 https://en.wikipedia.org/wiki/Euclid%27s_lemma

28.1. Primality Testing 273

https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
https://en.wikipedia.org/wiki/Euclid%27s_lemma

Foundations of Computer Science, Release 0.5

• If 𝑚 is composite, then the algorithm rejects 𝑚 with probability at least 3
4 .

The latter is due to the fact that when 𝑚 is composite, 𝑚 passes the Miller-Rabin test for at most 1
4 of the witnesses

1 ≤ 𝑎 ≤ 𝑚− 1. Unlike the Fermat test, there are no exceptions to this, making the Miller-Rabin test a better choice in
many applications.

Exercise 306 Polynomial identity testing is the problem of determining whether two polynomials 𝑝(𝑥) and 𝑞(𝑥)
are the same, or equivalently, whether 𝑝(𝑥)− 𝑞(𝑥) is the zero polynomial.

a) Let 𝑑 be an upper bound on the degree of 𝑝(𝑥) and 𝑞(𝑥). Show that for a randomly chosen integer 𝑎 ∈ [1, 4𝑑],
if 𝑝(𝑥) ̸= 𝑞(𝑥), then Pr[𝑝(𝑎) ̸= 𝑞(𝑎)] ≥ 3

4 .

Hint: A nonzero polynomial 𝑟(𝑥) of degree at most 𝑑 can have at most 𝑑 roots 𝑠𝑖 such that 𝑟(𝑠𝑖) = 0.

b) Devise an efficient, randomized algorithm 𝐴 to determine whether 𝑝(𝑥) and 𝑞(𝑥) are the same, with the
behavior that:

• if 𝑝(𝑥) = 𝑞(𝑥), then

Pr[𝐴 accepts 𝑝(𝑥), 𝑞(𝑥)] = 1

• if 𝑝(𝑥) ̸= 𝑞(𝑥), then

Pr[𝐴 rejects 𝑝(𝑥), 𝑞(𝑥)] ≥ 3

4

Assume that a polynomial can be efficiently evaluated on a single input.

28.2 Multiplicative Chernoff Bounds

Like Markov’s inequality, Chernoff bounds are a form of concentration bounds that allow us to reason about the devi-
ation of a random variable from its expectations. There are multiple variants of Chernoff bounds; we restrict ourselves
to the following “multiplicative” versions.

Let 𝑋 = 𝑋1 + · · · + 𝑋𝑛 be the sum of independent indicator random variables, where the indicator 𝑋𝑖 has the
expectation

E[𝑋𝑖] = Pr[𝑋𝑖 = 1] = 𝑝𝑖

Let 𝜇 be the expected value of 𝑋:

𝜇 = E[𝑋] =
∑︁
𝑖

E[𝑋𝑖] =
∑︁
𝑖

𝑝𝑖

Here, we’ve applied linearity of expectation to relate the expectation of 𝑋 to that of the indicators 𝑋𝑖. The Chernoff
bounds then are as follows.

Theorem 307 (Multiplicative Chernoff Bound – Upper Tail) Let 𝑋 = 𝑋1+ · · ·+𝑋𝑛, where the 𝑋𝑖 are inde-
pendent indicator random variables with E[𝑋𝑖] = 𝑝𝑖, and 𝜇 =

∑︀
𝑖 𝑝𝑖. Suppose we wish to bound the probability

of 𝑋 exceeding its expectation 𝜇 by at least a factor of 1 + 𝛿, where 𝛿 > 0. Then

Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ (
𝑒𝛿

(1 + 𝛿)1+𝛿
)𝜇

28.2. Multiplicative Chernoff Bounds 274

Foundations of Computer Science, Release 0.5

Theorem 308 (Multiplicative Chernoff Bound – Lower Tail) Let 𝑋 = 𝑋1+ · · ·+𝑋𝑛, where the 𝑋𝑖 are inde-
pendent indicator random variables with E[𝑋𝑖] = 𝑝𝑖, and 𝜇 =

∑︀
𝑖 𝑝𝑖. Suppose we wish to bound the probability

of 𝑋 being below its expectation 𝜇 by at least a factor of 1− 𝛿, where 0 < 𝛿 < 1. Then

Pr[𝑋 ≤ (1− 𝛿)𝜇] ≤ (
𝑒−𝛿

(1− 𝛿)1−𝛿
)𝜇

These inequalities can be unwieldy to work with, so we often use the following simpler, looser bounds.

Theorem 309 (Multiplicative Chernoff Bound – Simplified Upper Tail) Let 𝑋 = 𝑋1 + · · · +𝑋𝑛, where the
𝑋𝑖 are independent indicator random variables with E[𝑋𝑖] = 𝑝𝑖, and 𝜇 =

∑︀
𝑖 𝑝𝑖. Suppose we wish to bound the

probability of 𝑋 exceeding its expectation 𝜇 by at least a factor of 1 + 𝛿, where 𝛿 > 0. Then

Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ 𝑒−
𝛿2𝜇
2+𝛿

Theorem 310 (Multiplicative Chernoff Bound – Simplified Lower Tail) Let 𝑋 = 𝑋1 + · · · +𝑋𝑛, where the
𝑋𝑖 are independent indicator random variables with E[𝑋𝑖] = 𝑝𝑖, and 𝜇 =

∑︀
𝑖 𝑝𝑖. Suppose we wish to bound the

probability of 𝑋 being below its expectation 𝜇 by at least a factor of 1− 𝛿, where 0 < 𝛿 < 1. Then

Pr[𝑋 ≤ (1− 𝛿)𝜇] ≤ 𝑒−
𝛿2𝜇
2

Before we proceed to make use of these bounds, we first prove that the unsimplified upper-tail and lower-tail bounds
hold106.

Proof 311 (Proof of Upper-tail Chernoff Bound) To demonstrate the upper-tail Chernoff bound, we make use
of the Chernoff bounding technique – rather than reasoning about the random variable 𝑋 directly, we instead
reason about 𝑒𝑡𝑋 , since small deviations in 𝑋 turn into large deviations in 𝑒𝑡𝑋 . We have that 𝑋 ≥ (1 + 𝛿)𝜇
exactly when 𝑒𝑡𝑋 ≥ 𝑒𝑡(1+𝛿)𝜇 for any 𝑡 ≥ 0; we obtain this by raising 𝑒𝑡 ≥ 1 to the power of both sides of the
former inequality. Then

Pr[𝑋 ≥ (1 + 𝛿)𝜇] = Pr[𝑒𝑡𝑋 ≥ 𝑒𝑡(1+𝛿)𝜇]

≤ E[𝑒𝑡𝑋]
𝑒𝑡(1+𝛿)𝜇

where the latter step follows from Markov’s inequality. Continuing, we have

E[𝑒𝑡𝑋]
𝑒𝑡(1+𝛿)𝜇

= 𝑒−𝑡(1+𝛿)𝜇 · E[𝑒𝑡𝑋]
= 𝑒−𝑡(1+𝛿)𝜇 · E[𝑒𝑡(𝑋1+···+𝑋𝑛)]

= 𝑒−𝑡(1+𝛿)𝜇 · E
[︃∏︁

𝑖

𝑒𝑡𝑋𝑖

]︃
We now make use of the fact that the 𝑋𝑖 (and therefore the 𝑒𝑡𝑋𝑖) are independent. For independent random
variables 𝑌 and 𝑍, we have E[𝑌 𝑍] = E[𝑌] · E[𝑍] (see the appendix (page 231) for a proof). Thus,

𝑒−𝑡(1+𝛿)𝜇 · E
[︃∏︁

𝑖

𝑒𝑡𝑋𝑖

]︃
= 𝑒−𝑡(1+𝛿)𝜇

∏︁
𝑖

E[𝑒𝑡𝑋𝑖]

The 𝑋𝑖 are indicators, with Pr[𝑋𝑖 = 1] = 𝑝𝑖 and Pr[𝑋𝑖 = 0] = 1 − 𝑝𝑖. When 𝑋𝑖 = 1, 𝑒𝑡𝑋𝑖 = 𝑒𝑡, and when

106 Refer to the appendix (page 300) for proofs of the simplified bounds.

28.2. Multiplicative Chernoff Bounds 275

Foundations of Computer Science, Release 0.5

𝑋𝑖 = 0, 𝑒𝑡𝑋𝑖 = 𝑒0 = 1. Thus, the distribution of 𝑒𝑡𝑋𝑖 is

Pr[𝑒𝑡𝑋𝑖 = 𝑒𝑡] = 𝑝𝑖

Pr[𝑒𝑡𝑋𝑖 = 1] = 1− 𝑝𝑖

We can then compute the expectation of 𝑒𝑡𝑋𝑖 :

E[𝑒𝑡𝑋𝑖] = 𝑒𝑡 · Pr[𝑒𝑡𝑋𝑖 = 𝑒𝑡] + 1 · Pr[𝑒𝑡𝑋𝑖 = 1]

= 𝑒𝑡𝑝𝑖 + 1− 𝑝𝑖

= 1 + 𝑝𝑖(𝑒
𝑡 − 1)

Plugging this into the upper bound that resulted from Markov’s inequality, we get

𝑒−𝑡(1+𝛿)𝜇
∏︁
𝑖

E[𝑒𝑡𝑋𝑖] = 𝑒−𝑡(1+𝛿)𝜇
∏︁
𝑖

1 + 𝑝𝑖(𝑒
𝑡 − 1)

We can further simplify this expression by observing that 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥:

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

𝑒!

1 + 𝑥

Using 𝑥 = 𝑝𝑖(𝑒
𝑡 − 1), we have

1 + 𝑝𝑖(𝑒
𝑡 − 1) ≤ 𝑒𝑝𝑖(𝑒

𝑡−1)

28.2. Multiplicative Chernoff Bounds 276

Foundations of Computer Science, Release 0.5

Applying this to our previously computed upper bound, we get

𝑒−𝑡(1+𝛿)𝜇
∏︁
𝑖

1 + 𝑝𝑖(𝑒
𝑡 − 1) ≤ 𝑒−𝑡(1+𝛿)𝜇

∏︁
𝑖

𝑒𝑝𝑖(𝑒
𝑡−1)

= 𝑒−𝑡(1+𝛿)𝜇𝑒(𝑒
𝑡−1)

∑︀
𝑖 𝑝𝑖

= 𝑒−𝑡(1+𝛿)𝜇𝑒(𝑒
𝑡−1)𝜇

= 𝑒𝜇(𝑒
𝑡−1−𝑡(1+𝛿))

We can now choose 𝑡 to minimize the exponent, which in turn minimizes the value of the exponential itself. Let
𝑓(𝑡) = 𝑒𝑡−1−𝑡(1+𝛿). Then we compute the derivative with respect to 𝑡 and set that to zero to find an extremum:

𝑓(𝑡) = 𝑒𝑡 − 1− 𝑡(1 + 𝛿)

𝑓 ′(𝑡) = 𝑒𝑡 − (1 + 𝛿) = 0

𝑒𝑡 = 1 + 𝛿

𝑡 = ln(1 + 𝛿)

Computing the second derivative 𝑓 ′′(ln(1+𝛿)) = 𝑒ln(1+𝛿) = 1+𝛿, we see that it is positive since 𝛿 > 0, therefore
𝑡 = ln(1 + 𝛿) is a minimum. Substituting it into our earlier expression, we obtain

𝑒𝜇(𝑒
𝑡−1−𝑡(1+𝛿)) ≤ 𝑒𝜇(𝑒

ln(1+𝛿)−1−(1+𝛿) ln(1+𝛿))

= 𝑒𝜇((1+𝛿)−1−(1+𝛿) ln(1+𝛿))

= 𝑒𝜇(𝛿−(1+𝛿) ln(1+𝛿))

= (𝑒𝛿−(1+𝛿) ln(1+𝛿))𝜇

= (
𝑒𝛿

𝑒(1+𝛿) ln(1+𝛿)
)𝜇

= (
𝑒𝛿

(𝑒ln(1+𝛿))1+𝛿
)𝜇

= (
𝑒𝛿

(1 + 𝛿)1+𝛿
)𝜇

Proof 312 (Proof of Lower-tail Chernoff Bound) The proof of the lower-tail Chernoff bound follows similar
reasoning as that of the upper-tail bound. We have:

Pr[𝑋 ≤ (1− 𝛿)𝜇] = Pr[−𝑋 ≥ −(1− 𝛿)𝜇]

= Pr[𝑒−𝑡𝑋 ≥ 𝑒−𝑡(1−𝛿)𝜇]

≤ E[𝑒−𝑡𝑋]

𝑒−𝑡(1−𝛿)𝜇

Here, we can apply Markov’s inequality to the random variable 𝑒−𝑡𝑋 since it is nonnegative, unlike −𝑋 . Contin-

28.2. Multiplicative Chernoff Bounds 277

Foundations of Computer Science, Release 0.5

uing, we have

E[𝑒−𝑡𝑋]

𝑒−𝑡(1−𝛿)𝜇
= 𝑒𝑡(1−𝛿)𝜇 · E[𝑒−𝑡𝑋]

= 𝑒𝑡(1−𝛿)𝜇 · E[𝑒−𝑡(𝑋1+···+𝑋𝑛)]

= 𝑒𝑡(1−𝛿)𝜇 · E
[︃∏︁

𝑖

𝑒−𝑡𝑋𝑖

]︃
= 𝑒𝑡(1−𝛿)𝜇

∏︁
𝑖

E[𝑒−𝑡𝑋𝑖]

In the last step, we make use of the fact that the 𝑋𝑖 and therefore the 𝑒−𝑡𝑋𝑖 are independent. The distribution of
𝑒−𝑡𝑋𝑖 is

Pr[𝑒−𝑡𝑋𝑖 = 𝑒−𝑡] = 𝑝𝑖

Pr[𝑒−𝑡𝑋𝑖 = 1] = 1− 𝑝𝑖

Then the expectation of 𝑒−𝑡𝑋𝑖 is:

E[𝑒−𝑡𝑋𝑖] = 𝑒−𝑡 · Pr[𝑒−𝑡𝑋𝑖 = 𝑒−𝑡] + 1 · Pr[𝑒−𝑡𝑋𝑖 = 1]

= 𝑒−𝑡𝑝𝑖 + 1− 𝑝𝑖

= 1 + 𝑝𝑖(𝑒
−𝑡 − 1)

Plugging this into the bound we’ve computed so far, we get

𝑒𝑡(1−𝛿)𝜇
∏︁
𝑖

E[𝑒−𝑡𝑋𝑖] = 𝑒𝑡(1−𝛿)𝜇
∏︁
𝑖

1 + 𝑝𝑖(𝑒
−𝑡 − 1)

As with the upper-tail, we use the fact that 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥 to simplify this, with 𝑥 = 𝑝𝑖(𝑒
−𝑡 − 1):

𝑒𝑡(1−𝛿)𝜇
∏︁
𝑖

1 + 𝑝𝑖(𝑒
−𝑡 − 1) ≤ 𝑒𝑡(1−𝛿)𝜇

∏︁
𝑖

𝑒𝑝𝑖(𝑒
−𝑡−1)

= 𝑒𝑡(1−𝛿)𝜇𝑒(𝑒
−𝑡−1)

∑︀
𝑖 𝑝𝑖

= 𝑒𝑡(1−𝛿)𝜇𝑒(𝑒
−𝑡−1)𝜇

= 𝑒𝜇(𝑒
−𝑡−1+𝑡(1−𝛿))

We choose 𝑡 to minimize the exponent. Let 𝑓(𝑡) = 𝑒−𝑡 − 1 + 𝑡(1 − 𝛿). Then we compute the derivative with
respect to 𝑡 and set that to zero to find an extremum:

𝑓(𝑡) = 𝑒−𝑡 − 1 + 𝑡(1− 𝛿)

𝑓 ′(𝑡) = −𝑒−𝑡 + (1− 𝛿) = 0

𝑒−𝑡 = 1− 𝛿

𝑡 = − ln(1− 𝛿)

Computing the second derivative 𝑓 ′′(− ln(1 − 𝛿)) = 𝑒−(− ln(1−𝛿)) = 1 − 𝛿, we see that it is positive since

28.2. Multiplicative Chernoff Bounds 278

Foundations of Computer Science, Release 0.5

0 < 𝛿 < 1, therefore 𝑡 = ln(1− 𝛿) is a minimum. Substituting it into our earlier expression, we obtain

𝑒𝜇(𝑒
−𝑡−1+𝑡(1−𝛿)) ≤ 𝑒𝜇(𝑒

ln(1−𝛿)−1−(1−𝛿) ln(1−𝛿))

= 𝑒𝜇((1−𝛿)−1−(1−𝛿) ln(1−𝛿))

= 𝑒𝜇(−𝛿−(1−𝛿) ln(1−𝛿))

= (𝑒−𝛿−(1−𝛿) ln(1−𝛿))𝜇

= (
𝑒−𝛿

𝑒(1−𝛿) ln(1−𝛿)
)𝜇

= (
𝑒−𝛿

(𝑒ln(1−𝛿))1−𝛿
)𝜇

= (
𝑒−𝛿

(1− 𝛿)1−𝛿
)𝜇

In lieu of applying Chernoff bounds to the algorithm for estimating 𝜋, we consider a different example of flipping a
coin. If we flip a biased coin with probability 𝑝 of heads, we expect to see 𝑛𝑝 heads. Let 𝐻 be the total number of
heads, and let 𝐻𝑖 be an indicator variable corresponding to whether the 𝑖th flip is heads. We have Pr[𝐻𝑖 = 1] = 𝑝,
and E[𝐻] = 𝑛𝑝 by linearity of expectation.

Suppose the coin is fair. What is the probability of getting at least six heads out of ten flips? This is a fractional
deviation of 𝛿 = 6/5− 1 = 0.2, and applying the upper-tail Chernoff bound gives us:

Pr[𝐻 ≥ (1 + 0.2) · 5] ≤ (
𝑒0.2

1.21.2
)5

≈ 0.98145

≈ 0.91

What is the probability of getting at least 60 heads out of 100 flips, which is the same fractional deviation 𝛿 = 0.2 from
the expectation? Applying the upper tail again, we get

Pr[𝐻 ≥ (1 + 0.2) · 50] ≤ (
𝑒0.2

1.21.2
)50

≈ 0.981450

≈ 0.39

Thus, the probability of deviating by a factor of 1 + 𝛿 decreases significantly as the number of samples increases. For
this particular example, we can compute the actual probabilities quite tediously from exact formulas for a binomial
distribution107, which yields 0.37 for getting six heads out of ten flips and 0.03 for 60 heads out of 100 flips. However,
this approach becomes more and more expensive as 𝑛 increases, and the Chernoff bound produces a reasonable result
with much less work.

107 https://en.wikipedia.org/wiki/Binomial_distribution

28.2. Multiplicative Chernoff Bounds 279

https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Binomial_distribution

Foundations of Computer Science, Release 0.5

28.2.1 Polling Analysis with Chernoff Bounds

Recall that in polling (page 236), a confidence level 1− 𝛾 and margin of error 𝜀 requires

Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
≤ 𝜀

]︂
≥ 1− 𝛾

or equivalently

Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
> 𝜀

]︂
< 𝛾

Formally, we define indicator variables 𝑋𝑖 as

𝑋𝑖 =

{︃
1 if person 𝑖 supports the candidate
0 otherwise

for each person 𝑖 in the set that we poll. Then 𝑋 = 𝑋1 + · · ·+𝑋𝑛 is the sum of independent indicator variables, with

𝜇 = E[𝑋] =
∑︁
𝑖

E[𝑋𝑖] = 𝑛𝑝

For an arbitrary margin of error 𝜀, we want to bound the probability

Pr

[︂⃒⃒⃒⃒
𝑋

𝑛
− 𝑝

⃒⃒⃒⃒
> 𝜀

]︂
= Pr

[︂
𝑋

𝑛
− 𝑝 > 𝜀

]︂
+ Pr

[︂
𝑋

𝑛
− 𝑝 < −𝜀

]︂
= Pr

[︂
𝑋

𝑛
> 𝜀+ 𝑝

]︂
+ Pr

[︂
𝑋

𝑛
< −𝜀+ 𝑝

]︂
= Pr[𝑋 > 𝜀𝑛+ 𝑝𝑛] + Pr[𝑋 < −𝜀𝑛+ 𝑝𝑛]

= Pr[𝑋 > 𝜀𝑛+ 𝜇] + Pr[𝑋 < −𝜀𝑛+ 𝜇]

= Pr[𝑋 > (1 + 𝜀𝑛/𝜇)𝜇] + Pr[𝑋 < (1− 𝜀𝑛/𝜇)𝜇]

= Pr[𝑋 ≥ (1 + 𝜀𝑛/𝜇)𝜇] + Pr[𝑋 ≤ (1− 𝜀𝑛/𝜇)𝜇]

− Pr[𝑋 = (1 + 𝜀𝑛/𝜇)𝜇]− Pr[𝑋 = (1− 𝜀𝑛/𝜇)𝜇]

≤ Pr[𝑋 ≥ (1 + 𝜀𝑛/𝜇)𝜇] + Pr[𝑋 ≤ (1− 𝜀𝑛/𝜇)𝜇]

In the second-to-last step, we use the fact that 𝑋 = 𝑥 and 𝑋 > 𝑥 are disjoint events, since a random variable maps
each sample point to a single value, and that (𝑋 ≥ 𝑥) = (𝑋 = 𝑥) ∪ (𝑋 > 𝑥).

We now have events that are in the right form to apply a Chernoff bound, with 𝛿 = 𝜀𝑛/𝜇. We first apply the simplified
upper-tail bound to the first term, obtaining

Pr[𝑋 ≥ (1 + 𝜀𝑛/𝜇)𝜇] ≤ 𝑒−
𝛿2𝜇
2+𝛿 where 𝛿 = 𝜀𝑛/𝜇

= 𝑒
− (𝜀𝑛)2𝜇

𝜇2(2+𝜀𝑛/𝜇)

= 𝑒−
(𝜀𝑛)2

𝜇(2+𝜀𝑛/𝜇)

= 𝑒−
(𝜀𝑛)2

2𝜇+𝜀𝑛

= 𝑒−
(𝜀𝑛)2

2𝑛𝑝+𝜀𝑛

= 𝑒−
𝜀2𝑛
2𝑝+𝜀

28.2. Multiplicative Chernoff Bounds 280

Foundations of Computer Science, Release 0.5

We want this to be less than some value 𝛽:

𝑒−
𝜀2𝑛
2𝑝+𝜀 < 𝛽

1

𝛽
< 𝑒

𝜀2𝑛
2𝑝+𝜀

ln(
1

𝛽
) <

𝜀2𝑛

2𝑝+ 𝜀

𝑛 >
2𝑝+ 𝜀

𝜀2
ln(

1

𝛽
)

Unfortunately, this expression includes 𝑝, the quantity we’re trying to estimate However, we know that 𝑝 ≤ 1, so we
can set

𝑛 >
2 + 𝜀

𝜀2
ln(

1

𝛽
)

to ensure that Pr[𝑋 ≥ (1 + 𝜀𝑛/𝜇)𝜇] < 𝛽.

We can also apply the simplified lower-tail bound to the second term in our full expression above:

Pr[𝑋 ≤ (1− 𝜀𝑛/𝜇)𝜇] ≤ 𝑒−
𝛿2𝜇
2 where 𝛿 = 𝜀𝑛/𝜇

= 𝑒
− (𝜀𝑛)2𝜇

2𝜇2

= 𝑒−
(𝜀𝑛)2

2𝜇

= 𝑒−
(𝜀𝑛)2

2𝑛𝑝

= 𝑒−
𝜀2𝑛
2𝑝

As before, we want this to be less some value 𝛽:

𝑒−
𝜀2𝑛
2𝑝) < 𝛽

1

𝛽
< 𝑒

𝜀2𝑛
2𝑝

ln(
1

𝛽
) <

𝜀2𝑛

2𝑝

𝑛 >
2𝑝

𝜀2
ln(

1

𝛽
)

We again observe that 𝑝 ≤ 1, so we can set

𝑛 >
2

𝜀2
ln(

1

𝛽
)

to ensure that Pr[𝑋 ≤ (1− 𝜀𝑛/𝜇)𝜇] < 𝛽.

To bound both terms simultaneously, we can choose 𝛽 = 𝛾/2, so that

Pr[𝑋 ≥ (1 + 𝜀𝑛/𝜇)𝜇] + Pr[𝑋 ≤ (1− 𝜀𝑛/𝜇)𝜇] < 2𝛽 = 𝛾

To achieve this, we require

𝑛 > max(
2 + 𝜀

𝜀2
ln(

2

𝛾
),

2

𝜀2
ln(

2

𝛾
))

=
2 + 𝜀

𝜀2
ln(

2

𝛾
)

28.2. Multiplicative Chernoff Bounds 281

Foundations of Computer Science, Release 0.5

For example, for a 95% confidence level and a margin of error of ±2%, we have 𝜀 = 0.02 and 𝛾 = 0.05. Plugging
those values into the result above, we need no more than

2 + 𝜀

𝜀2
ln(

2

𝛾
) =

2.02

0.022
ln 40 ≈ 18623

samples to achieve the desired confidence level and margin of error. Observe that this does not depend on the total
population size!

28.3 Probabilistic Complexity Classes

The Fermat primality test (page 271) is an example of a one-sided-error randomized algorithm – an input that is pseu-
doprime is always accepted, while a non-pseudoprime is sometimes accepted and sometimes rejected. We can define
complexity classes corresponding to decision problems that have efficient one-sided-error randomized algorithms.

Definition 313 (RP) RP is the class of languages that have efficient one-sided-error randomized algorithms with
no false positives. A language 𝐿 is in RP if there is an efficient randomized algorithm 𝐴 such that:

• if 𝑥 ∈ 𝐿, Pr[𝐴 accepts 𝑥] ≥ 𝑐

• if 𝑥 /∈ 𝐿, Pr[𝐴 rejects 𝑥] = 1

Here, 𝑐 must be a constant greater than 0. Often, 𝑐 is chosen to be 1
2 .

Definition 314 (coRP) coRP is the class of languages that have efficient one-sided-error randomized algorithms
with no false negatives. A language 𝐿 is in coRP if there is an efficient randomized algorithm 𝐴 such that:

• if 𝑥 ∈ 𝐿, Pr[𝐴 accepts 𝑥] = 1

• if 𝑥 /∈ 𝐿, Pr[𝐴 rejects 𝑥] ≥ 𝑐

Here, 𝑐 must be a constant greater than 0. Often, 𝑐 is chosen to be 1
2 .

RP stands for randomized polynomial time. If a language 𝐿 is in RP, then its complement language 𝐿 is in coRP – an
algorithm for 𝐿 with no false positives can be converted into an algorithm for 𝐿 with no false negatives. The Fermat
test produces no false negatives, so PSEUDOPRIMES ∈ coRP. Thus, the language

PSEUDOPRIMES =

{︃
𝑚 ∈ N : 𝑎𝑚−1 mod 𝑚 ≡ 1 for at least half

the witnesses 1 ≤ 𝑎 ≤ 𝑚− 1

}︃

is in RP.

The constant 𝑐 in the definition of RP and coRP is arbitrary. With any 𝑐 > 0, we can amplify the probability of success
by repeatedly running the algorithm. For instance, if we have a randomized algorithm 𝐴 with no false positives for a
language 𝐿, we have:

𝑥 ∈ 𝐿 =⇒ Pr[𝐴 accepts 𝑥] ≥ 𝑐

𝑥 /∈ 𝐿 =⇒ Pr[𝐴 accepts 𝑥] = 0

We can construct a new algorithm 𝐵 as follows:

function 𝐵(𝑥)
run 𝐴(𝑥) twice (with fresh randomness each time)
if it accepts at least once then accept
reject

28.3. Probabilistic Complexity Classes 282

Foundations of Computer Science, Release 0.5

𝐵 just runs 𝐴 twice on the input, accepting if at least one run of 𝐴 accepts; 𝐵 only rejects if both runs of 𝐴 reject.
Thus, the probability that 𝐵 rejects 𝑥 is:

Pr[𝐵 rejects 𝑥] = Pr[𝐴 rejects 𝑥 in run 1, 𝐴 rejects 𝑥 in run 2]
= Pr[𝐴 rejects 𝑥 in run 1] · Pr[𝐴 rejects 𝑥 in run 2]
= Pr[𝐴 rejects 𝑥]2

Here, we have used the fact that the two runs of 𝐴 are independent, so the probability of 𝐴 rejecting twice is the product
of the probabilities it rejects each time. This gives us:

𝑥 ∈ 𝐿 =⇒ Pr[𝐵 rejects 𝑥] ≤ (1− 𝑐)2

𝑥 /∈ 𝐿 =⇒ Pr[𝐵 rejects 𝑥] = 1

or equivalently:

𝑥 ∈ 𝐿 =⇒ Pr[𝐵 accepts 𝑥] ≥ 1− (1− 𝑐)2

𝑥 /∈ 𝐿 =⇒ Pr[𝐵 accepts 𝑥] = 0

Repeating this reasoning, if we modify 𝐵 to run 𝐴 𝑘 times, we get:

𝑥 ∈ 𝐿 =⇒ Pr[𝐵 accepts 𝑥] ≥ 1− (1− 𝑐)𝑘

𝑥 /∈ 𝐿 =⇒ Pr[𝐵 accepts 𝑥] = 0

By applying a form of Bernoulli’s inequality108, (1 + 𝑥)𝑟 ≤ 𝑒𝑟𝑥, we get:

𝑥 ∈ 𝐿 =⇒ Pr[𝐵 accepts 𝑥] ≥ 1− 𝑒−𝑐𝑘

If we want a particular lower bound 1− 𝜀 for acceptance of true positives, we need

𝑒−𝑐𝑘 ≤ 𝜀

−𝑐𝑘 ≤ ln 𝜀

𝑘 ≥ − ln 𝜀

𝑐
=

ln(1/𝜀)

𝑐

This is a constant for any constants 𝑐 and 𝜀. Thus, we can amplify the probability of accepting a true positive from
𝑐 to 1 − 𝜀 for any 𝜀 with a constant ln(1/𝜀)/𝑐 number of repetitions. The same reasoning can be applied to amplify
one-sided-error algorithms with no false negatives.

One-sided-error randomized algorithms are a special case of two-sided-error randomized algorithms. Such an algo-
rithm for a language 𝐿 can produce the wrong result for an input 𝑥 whether or not 𝑥 ∈ 𝐿. However, the probability of
getting the wrong result is bounded by a constant.

Definition 315 (BPP) BPP is the class of languages that have efficient two-sided-error randomized algorithms.
A language 𝐿 is in BPP if there is an efficient randomized algorithm 𝐴 such that:

• if 𝑥 ∈ 𝐿, Pr[𝐴 accepts 𝑥] ≥ 𝑐

• if 𝑥 /∈ 𝐿, Pr[𝐴 rejects 𝑥] ≥ 𝑐

Here, 𝑐 must be a constant greater than 1
2 , so that the algorithm produces the correct answer the majority of the

time. Often, 𝑐 is chosen to be 2
3 or 3

4 .

BPP stands for bounded-error probabilistic polynomial time. Given the symmetric definition of a two-sided error
algorithm, it is clear that the class BPP is closed under complement – if a language 𝐿 ∈ BPP, then 𝐿 ∈ BPP as well.

Languages in RP and in coRP both trivially satisfy the conditions for BPP; for instance, we have the following for RP:
108 https://en.wikipedia.org/wiki/Bernoulli%27s_inequality

28.3. Probabilistic Complexity Classes 283

https://en.wikipedia.org/wiki/Bernoulli%27s_inequality

Foundations of Computer Science, Release 0.5

• if 𝑥 ∈ 𝐿, Pr[𝐴 accepts 𝑥] ≥ 𝑐

• if 𝑥 /∈ 𝐿, Pr[𝐴 rejects 𝑥] = 1 ≥ 𝑐

Thus, RP ∪ coRP ⊆ BPP. By similar reasoning, we can relate P to these classes as follows:

P ⊆ RP ⊆ BPP

P ⊆ coRP ⊆ BPP

As with one-sided-error algorithms, the probability of success for two-sided-error randomized algorithms can be am-
plified arbitrarily, as we will see shortly (page 287).

One-sided-error and two-sided-error randomized algorithms are known as Monte Carlo algorithms. Such algorithms
have a bounded runtime, but they may produce the wrong answer. Contrast this with Las Vegas algorithms, which
always produce the correct answer, but where the runtime bound only holds in expectation. We can define a complexity
class for languages that have Las Vegas algorithms with expected runtime that is polynomial in the size of the input.

Definition 316 (ZPP) ZPP is the class of languages that have efficient Las Vegas algorithms. A language 𝐿 is in
ZPP if there is a randomized algorithm 𝐴 such that:

• If 𝑥 ∈ 𝐿, 𝐴 always accepts 𝑥.

• If 𝑥 /∈ 𝐿, 𝐴 always rejects 𝑥.

• The expected runtime of 𝐴 on input 𝑥 is 𝑂(|𝑥|𝑘) for some constant 𝑘.

There is a relationship between Monte Carlo and Las Vegas algorithms: if a language 𝐿 has both a one-sided-error
algorithm with no false positives and a one-sided-error algorithm with no false negatives, then it has a Las Vegas
algorithm, and vice versa. In terms of complexity classes, we have 𝐿 is in both RP and coRP if and only if 𝐿 is in ZPP.
This implies that

RP ∩ coRP = ZPP

We demonstrate this as follows. Suppose 𝐿 is in RP∩ coRP. Then it has an efficient, one-sided-error algorithm 𝐴 with
no false positives such that:

• if 𝑥 ∈ 𝐿, Pr[𝐴 accepts 𝑥] ≥ 1
2

• if 𝑥 /∈ 𝐿, Pr[𝐴 accepts 𝑥] = 0

Here, we have selected 𝑐 = 1
2 for concreteness. 𝐿 also has an efficient, one-sided algorithm 𝐵 with no false negatives

such that:

• if 𝑥 ∈ 𝐿, Pr[𝐵 rejects 𝑥] = 0

• if 𝑥 /∈ 𝐿, Pr[𝐵 rejects 𝑥] ≥ 1
2

We can construct a new algorithm 𝐶 as follows:

function 𝐶(𝑥)
while true do

if 𝐴(𝑥) accepts then accept
if 𝐵(𝑥) rejects then reject

Since 𝐴 only accepts 𝑥 ∈ 𝐿 and 𝐶 only accepts when 𝐴 does, 𝐶 only accepts 𝑥 ∈ 𝐿. Similarly, 𝐵 only rejects 𝑥 /∈ 𝐿,
so 𝐶 only rejects 𝑥 /∈ 𝐿. Thus, 𝐶 always produces the correct answer for a given input.

To show that 𝐿 ∈ ZPP, we must also demonstrate that the expected runtime of 𝐶 is polynomial. For each iteration 𝑖
of 𝐶, we have:

• if 𝑥 ∈ 𝐿, Pr[𝐴 accepts 𝑥 in iteration 𝑖] ≥ 1
2

28.3. Probabilistic Complexity Classes 284

Foundations of Computer Science, Release 0.5

• if 𝑥 /∈ 𝐿, Pr[𝐵 rejects 𝑥 in iteration 𝑖] ≥ 1
2

Thus, if 𝐶 gets to iteration 𝑖, the probability that 𝐶 terminates in that iteration is at least 1
2 . We can model the number

of iterations as a random variable 𝑋 , and 𝑋 has the probability distribution:

Pr[𝑋 > 𝑘] ≤ (
1

2
)𝑘

This is similar to a geometric distribution, where

Pr[𝑌 > 𝑘] = (1− 𝑝)𝑘

for some 𝑝 ∈ (0, 1]. The expected value of such a distribution is E[𝑌] = 1/𝑝. This gives us:

E[𝑋] ≤ 2

Thus, the expected number of iterations of 𝐶 is no more than two, and since 𝐴 and 𝐵 are both efficient, calling them
twice is also efficient.

We have shown that RP ∩ coRP ⊆ ZPP. We will proceed to show that ZPP ⊆ RP, meaning that if a language has an
efficient Las Vegas algorithm, it also has an efficient one-sided-error algorithm with no false positives. Assume that
𝐶 is a Las Vegas algorithm for 𝐿 ∈ ZPP, with expected runtime of no more than |𝑥|𝑘 steps for an input 𝑥 and some
constant 𝑘. We construct a new algorithm 𝐴 as follows:

function 𝐴(𝑥) simulate 𝐶(𝑥) for up to 2|𝑥|𝑘 steps (or until it halts)
if it accepts then accept
reject

𝐴 is clearly efficient in the size of the input 𝑥. It also has no false positives, since it only accepts if 𝐶 accepts within the
first 2|𝑥|𝑘 steps, and𝐶 always produces the correct answer. All that is left is to show that if 𝑥 ∈ 𝐿, Pr[𝐴 accepts 𝑥] ≥ 1

2
(again, we arbitrarily choose 𝑐 = 1

2).

Let 𝑆 be the number of steps before 𝐶 accepts 𝑥. By assumption, we have

E[𝑆] ≤ |𝑥|𝑘

𝐴 runs 𝐶 for 2|𝑥|𝑘 steps, so we need to bound the probability that 𝐶 takes more than 2|𝑥|𝑘 steps on 𝑥. We have:

Pr[𝑆 > 2|𝑥|𝑘] ≤ Pr[𝑆 ≥ 2|𝑥|𝑘]

≤ E[𝑆]
2|𝑥|𝑘

≤ |𝑥|𝑘
2|𝑥|𝑘

=
1

2

Here, we applied Markov’s inequality in the second step. Then:

Pr[𝐴 accepts 𝑥] = Pr[𝑆 ≤ 2|𝑥|𝑘]
= 1− Pr[𝑆 > 2|𝑥|𝑘]

≥ 1

2

Thus, 𝐴 is indeed a one-sided-error algorithm with no false positives, so 𝐿 ∈ RP. A similar construction can be used
to demonstrate that 𝐿 ∈ coRP, allowing us to conclude that ZPP ⊆ RP ∩ coRP. Combined with our previous proof
that RP ∩ coRP ⊆ ZPP, we have RP ∩ coRP = ZPP.

28.3. Probabilistic Complexity Classes 285

Foundations of Computer Science, Release 0.5

One final observation we will make is that if a language 𝐿 is in RP, then it is also in NP. Since 𝐿 ∈ RP, there is
an efficient, one-sided-error randomized algorithm 𝐴 to decide 𝐿. 𝐴 is allowed to make random choices, and we can
model each choice as a coin flip, i.e. being either 0 or 1 according to some probability distribution. We can represent
the combination of these choices in a particular run of 𝐴 as a binary string 𝑐. This enables us to write an efficient
verifier 𝑉 for 𝐿 as follows:

function 𝑉 (𝑥, 𝑐 = 𝑐1𝑐2 · · · 𝑐𝑚) simulate 𝐴(𝑥), using 𝑐𝑖 for the 𝑖th random bit used by 𝐴
if 𝐴 accepts then accept
reject

If 𝑥 ∈ 𝐿, then Pr[𝐴 accepts 𝑥] ≥ 1
2 , so at least half the possible sequences of random choices lead to 𝐴 accepting 𝑥.

On the other hand, if 𝑥 /∈ 𝐿, then Pr[𝐴 rejects 𝑥] = 1, so all sequences of random choices lead to 𝐴 rejecting 𝑥. Thus,
𝑉 accepts at least half of all possible certificates when 𝑥 ∈ 𝐿, and 𝑉 rejects all certificates when 𝑥 /∈ 𝐿, so 𝑉 is a
verifier for 𝐿. Since 𝐴 is efficient, 𝑉 is also efficient.

We summarize the known relationships between complexity classes as follows:

P ⊆ ZPP ⊆ RP ⊆ NP

P ⊆ ZPP ⊆ RP ⊆ BPP

P ⊆ ZPP ⊆ coRP ⊆ coNP

P ⊆ ZPP ⊆ coRP ⊆ BPP

These relationships are represented pictorially, with edges signifying containment, as follows:

NP BPP coNP

RP coRP

ZPP

P

2

Here, coNP is the class of languages whose complements are in NP:

coNP = {𝐿 : 𝐿 ∈ NP}

We do not know if any of the containments above are strict, and we do not know the relationships between NP, coNP,
and BPP. It is commonly believed that P and BPP are equal and thus BPP is contained in NP ∩ coNP, that neither P
nor BPP contain all of NP or all of coNP, and that NP and coNP are not equal. However, none of these conjectures

28.3. Probabilistic Complexity Classes 286

Foundations of Computer Science, Release 0.5

has been proven109.

28.4 Amplification for Two-Sided-Error Algorithms

Previously, we saw how to amplify the probability of success for one-sided-error randomized algorithms (page 282). We
now consider amplification for two-sided-error algorithms (page 283). Recall that such an algorithm 𝐴 for a language
𝐿 has the following behavior:

• if 𝑥 ∈ 𝐿, Pr[𝐴 accepts 𝑥] ≥ 𝑐

• if 𝑥 /∈ 𝐿, Pr[𝐴 rejects 𝑥] ≥ 𝑐

Here, 𝑐 must be a constant that is strictly greater than 1
2 .

Unlike in the one-sided case with no false positives, we cannot just run the algorithm multiple times and observe if it
accepts at least once. A two-sided-error algorithm can accept both inputs in and not in the language, and it can reject
both such inputs as well. However, we observe that because 𝑐 > 1

2 , we expect to get the right answer the majority of
the time when we run a two-sided-error algorithm on an input. More formally, suppose we run the algorithm 𝑛 times.
Let 𝑌𝑖 be an indicator random variable that is 1 if the algorithm accepts in the 𝑖th run. Then:

• if 𝑥 ∈ 𝐿, E[𝑌𝑖] = Pr[𝑌𝑖 = 1] ≥ 𝑐

• if 𝑥 /∈ 𝐿, E[𝑌𝑖] = Pr[𝑌𝑖 = 1] ≤ 1− 𝑐

Let 𝑌 = 𝑌1 + · · ·+ 𝑌𝑛 be the total number of accepts out of 𝑛 trials. By linearity of expectation, we have:

• if 𝑥 ∈ 𝐿, E[𝑌] ≥ 𝑐𝑛 > 𝑛
2 (since 𝑐 > 1

2)

• if 𝑥 /∈ 𝐿, E[𝑌] ≤ (1− 𝑐)𝑛 < 𝑛
2 (since 1− 𝑐 < 1

2)

This motivates an amplification algorithm 𝐵 that runs the original algorithm 𝐴 multiple times and takes the majority
vote:

function 𝐵(𝑥)
run 𝐴(𝑥) 𝑛 times (with fresh randomness each time)
if it accepts at least 𝑛/2 times then accept
reject

Suppose we wish to obtain a bound that is within 𝛾 of 1:

• if 𝑥 ∈ 𝐿, Pr[𝐵 accepts 𝑥] ≥ 1− 𝛾

• if 𝑥 /∈ 𝐿, Pr[𝐵 rejects 𝑥] ≥ 1− 𝛾

What value for 𝑛 should we use in 𝐵?

We first consider the case where 𝑥 ∈ 𝐿. The indicators 𝑌𝑖 are independent, allowing us to use Hoeffding’s inequality
on their sum 𝑌 . 𝐵 accepts 𝑥 when 𝑌 ≥ 𝑛

2 , or equivalently, 𝑌
𝑛 ≥ 1

2 . We want

Pr

[︂
𝑌

𝑛
≥ 1

2

]︂
≥ 1− 𝛾

109 It is known, however, that if P = NP, then P = BPP. This is because BPP is contained within the polynomial hierarchyPage 287, 110, and one
of the consequences of P = NP is the “collapse” of the hierarchy. The details are beyond the scope of this text.

110 https://en.wikipedia.org/wiki/Polynomial_hierarchy

28.4. Amplification for Two-Sided-Error Algorithms 287

https://en.wikipedia.org/wiki/Polynomial_hierarchy

Foundations of Computer Science, Release 0.5

or equivalently,

Pr

[︂
𝑌

𝑛
<

1

2

]︂
≤ Pr

[︂
𝑌

𝑛
≤ 1

2

]︂
= Pr

[︂
𝑌

𝑛
≤ 𝑐− (𝑐− 1

2
)

]︂
= Pr

[︂
𝑌

𝑛
≤ 𝑐− 𝜀

]︂
≤ 𝛾

where 𝜀 = 𝑐− 1
2 . To apply Hoeffding’s inequality, we need something of the form

Pr

[︂
𝑌

𝑛
≤ 𝑝− 𝜀

]︂
where 𝑝 = E

[︀
𝑌
𝑛

]︀
. Unfortunately, we do not know the exact value of 𝑝; all we know is that 𝑝 = E

[︀
𝑌
𝑛

]︀
≥ 𝑐. However,

we know that because 𝑝 ≥ 𝑐,

Pr

[︂
𝑌

𝑛
≤ 𝑐− 𝜀

]︂
≤ Pr

[︂
𝑌

𝑛
≤ 𝑝− 𝜀

]︂
In general, the event 𝑋 ≤ 𝑎 includes at most as many sample points as 𝑋 ≤ 𝑏 when 𝑎 ≤ 𝑏; the latter includes all the
outcomes in 𝑋 ≤ 𝑎, as well as those in 𝑎 < 𝑋 ≤ 𝑏. We thus need only compute an upper bound on Pr

[︀
𝑌
𝑛 ≤ 𝑝− 𝜀

]︀
,

and that same upper bound will apply to Pr
[︀
𝑌
𝑛 ≤ 𝑐− 𝜀

]︀
. Taking 𝜀 = 𝑐 − 1

2 and applying the lower-tail Hoeffding’s
inequality, we get:

Pr

[︂
𝑌

𝑛
≤ 𝑝− 𝜀

]︂
= Pr

[︂
𝑌

𝑛
≤ 𝑝− (𝑐− 1

2
)

]︂
≤ 𝑒−2(𝑐−1/2)2𝑛

We want this to be bound by 𝛾:

𝑒−2(𝑐−1/2)2𝑛 ≤ 𝛾

𝑒2(𝑐−1/2)2𝑛 ≥ 1

𝛾

2(𝑐− 1/2)2𝑛 ≥ ln(
1

𝛾
)

𝑛 ≥ 1

2(𝑐− 1/2)2
ln(

1

𝛾
)

As a concrete example, suppose 𝑐 = 3
4 , meaning that 𝐴 accepts 𝑥 ∈ 𝐿 with probability at least 3

4 . Suppose we want 𝐵
to accept 𝑥 ∈ 𝐿 at least 99% of the time, giving us 𝛾 = 0.01. Then:

𝑛 ≥ 1

2(3/4− 1/2)2
ln(

1

0.01
)

=
1

2 · 0.252 ln 100

≈ 36.8

Thus, it is sufficient for 𝐵 to run 𝑛 ≥ 37 trials of 𝐴 on 𝑥.

We now consider 𝑥 /∈ 𝐿. We want 𝐵 to reject 𝑥 with probability at least 1 − 𝛾, or equivalently, 𝐵 to accept 𝑥 with
probability at most 𝛾:

Pr

[︂
𝑌

𝑛
≥ 1

2

]︂
≤ 𝛾

28.4. Amplification for Two-Sided-Error Algorithms 288

Foundations of Computer Science, Release 0.5

Similar to before, we have

Pr

[︂
𝑌

𝑛
≥ 1

2

]︂
= Pr

[︂
𝑌

𝑛
≥ (1− 𝑐) + (𝑐− 1

2
)

]︂
= Pr

[︂
𝑌

𝑛
≥ (1− 𝑐) + 𝜀

]︂
with 𝜀 = 𝑐− 1

2 . Since 𝑝 = E
[︀
𝑌
𝑛

]︀
≤ (1− 𝑐), we have

Pr

[︂
𝑌

𝑛
≥ (1− 𝑐) + 𝜀

]︂
≤ Pr

[︂
𝑌

𝑛
≥ 𝑝+ 𝜀

]︂
This follows from similar reasoning as earlier: an event 𝑋 ≥ 𝑎 contains no more sample points than 𝑋 ≥ 𝑏 when
𝑎 ≥ 𝑏. With 𝜀 = 𝑐− 1

2 , the upper-tail Hoeffding’s inequality gives us:

Pr

[︂
𝑌

𝑛
≥ 𝑝+ 𝜀

]︂
= Pr

[︂
𝑌

𝑛
≥ 𝑝+ (𝑐− 1

2
)

]︂
≤ 𝑒−2(𝑐−1/2)2𝑛

We want this to be no more than 𝛾, which leads to the same solution as before:

𝑛 ≥ 1

2(𝑐− 1/2)2
ln(

1

𝛾
)

Using the same concrete example as before, if we want 𝐵 to reject 𝑥 /∈ 𝐿 at least 99% of the time when 𝐴 rejects 𝑥 /∈ 𝐿
with probability at least 3

4 , it suffices for 𝐵 to run 𝑛 ≥ 37 trials of 𝐴 on 𝑥.

28.4. Amplification for Two-Sided-Error Algorithms 289

Part VII

Appendix

290

CHAPTER

TWENTYNINE

APPENDIX

29.1 Proof of the Master Theorem

We first prove the standard master theorem (page 14) without log factors.

Proof 317 We prove the master theorem for the case where 𝑛 is a power of 𝑏; when this is not the case, we can
pad the input size to the smallest power of 𝑏 that is larger than 𝑛, which increases the input size by at most the
constant factor 𝑏 (can you see why?).

First, we determine how many subproblems we have at each level of the recursion. Initially, we have a single
problem of size 𝑛. We subdivide it into 𝑘 subproblems, each of size 𝑛/𝑏. Each of those gets subdivided into 𝑘
subproblems of size 𝑛/𝑏2, for a total of 𝑘2 problems of size 𝑛/𝑏2. Those 𝑘2 problems in turn are subdivided into
a total of 𝑘3 problems of size 𝑛/𝑏3.

𝑛

𝑛
𝑏

𝑛
𝑏⋯

𝑘

𝑛
𝑏!

𝑛
𝑏!⋯

𝑛
𝑏!

𝑛
𝑏!⋯

𝑘!

1 1 ⋯

⋮

1 1

𝑘"#$! %

level 𝑖 = 0

level 𝑖 = 1

level 𝑖 = 2

level 𝑖 = log" 𝑛

In general, at the 𝑖th level of recursion (with 𝑖 = 0 the initial problem), there are 𝑘𝑖 subproblems of size 𝑛/𝑏𝑖. We

291

Foundations of Computer Science, Release 0.5

assume that the base case is when the problem size is 1, which is when

1 =
𝑛

𝑏𝑖

𝑏𝑖 = 𝑛

𝑖 = log𝑏 𝑛

Thus, there are 1 + log𝑏 𝑛 total levels in the recursion.

We now consider how much work is done in each subproblem, which corresponds to the 𝑂(𝑛𝑑) term of the
recurrence relation. For a subproblem of size 𝑛/𝑏𝑖, this is

𝑂((
𝑛

𝑏𝑖
)𝑑) = 𝑂(

𝑛𝑑

𝑏𝑖𝑑
)

= 𝑏−𝑖𝑑 ·𝑂(𝑛𝑑)

With 𝑘𝑖 subproblems at level 𝑖, the total work 𝑇𝑖 at level 𝑖 is

𝑇𝑖 =
𝑘𝑖

𝑏𝑖𝑑
·𝑂(𝑛𝑑)

= (
𝑘

𝑏𝑑
)𝑖 ·𝑂(𝑛𝑑)

Summing over all the levels, we get a total work

𝑇 =

log𝑏 𝑛∑︁
𝑖=0

𝑇𝑖

=

log𝑏 𝑛∑︁
𝑖=0

((
𝑘

𝑏𝑑
)𝑖 ·𝑂(𝑛𝑑))

= 𝑂(𝑛𝑑) ·
log𝑏 𝑛∑︁
𝑖=0

(
𝑘

𝑏𝑑
)𝑖

= 𝑂(𝑛𝑑) ·
log𝑏 𝑛∑︁
𝑖=0

𝑟𝑖

= 𝑂(𝑛𝑑 ·
log𝑏 𝑛∑︁
𝑖=0

𝑟𝑖)

= 𝑂(𝑛𝑑 · (1 + 𝑟 + 𝑟2 + · · ·+ 𝑟log𝑏 𝑛))

where 𝑟 = 𝑘/𝑏𝑑.

Since we are working with asymptotics, we only care about the dominating term in the sum

log𝑏 𝑛∑︁
𝑖=0

𝑟𝑖 = 1 + 𝑟 + 𝑟2 + · · ·+ 𝑟log𝑏 𝑛

There are three cases:

29.1. Proof of the Master Theorem 292

Foundations of Computer Science, Release 0.5

• 𝑟 < 1: The terms have decreasing value, so that the initial term 1 is the largest and dominates111. Thus, we
have

𝑇 = 𝑂(𝑛𝑑 · (1 + 𝑟 + 𝑟2 + · · ·+ 𝑟log𝑏 𝑛))

= 𝑂(𝑛𝑑)

• 𝑟 = 1: The terms all have the same value 1. Then

𝑇 = 𝑂(𝑛𝑑 ·
log𝑏 𝑛∑︁
𝑖=0

𝑟𝑖)

= 𝑂(𝑛𝑑 ·
log𝑏 𝑛∑︁
𝑖=0

1)

= 𝑂(𝑛𝑑 · (1 + log𝑏 𝑛))

= 𝑂(𝑛𝑑 + 𝑛𝑑 log𝑏 𝑛))

= 𝑂(𝑛𝑑 log𝑏 𝑛)

where we discard the lower-order term in the last step. Since logarithms of different bases differ only by a
multiplicative constant factor (see the logarithmic identity for changing the base114), which does not affect
asymptotics, we can elide the base:

𝑇 = 𝑂(𝑛𝑑 log𝑏 𝑛)

= 𝑂(𝑛𝑑 log 𝑛)

• 𝑟 > 1: The terms have increasing value, so that the final term 𝑟log𝑏 𝑛 is the largest. Then we have

𝑇 = 𝑂(𝑛𝑑 · (1 + 𝑟 + 𝑟2 + · · ·+ 𝑟log𝑏 𝑛))

= 𝑂(𝑛𝑑𝑟log𝑏 𝑛)

= 𝑂(𝑛𝑑(
𝑘

𝑏𝑑
)log𝑏 𝑛)

= 𝑂(𝑛𝑑 · 𝑘log𝑏 𝑛 · 𝑏−𝑑 log𝑏 𝑛)

= 𝑂(𝑛𝑑 · 𝑘log𝑏 𝑛 · (𝑏log𝑏 𝑛)−𝑑)

To simplify this further, we observe the following:

– 𝑏log𝑏 𝑛 = 𝑛, which we can see by taking log𝑏 of both sides.

– 𝑘log𝑏 𝑛 = 𝑛log𝑏 𝑘. We show this as follows:

𝑘log𝑏 𝑛 = (𝑏log𝑏 𝑘)log𝑏 𝑛

Here, we applied the previous observation to substitute 𝑘 = 𝑏log𝑏 𝑘. We proceed to get

𝑘log𝑏 𝑛 = (𝑏log𝑏 𝑘)log𝑏 𝑛

= (𝑏log𝑏 𝑛)log𝑏 𝑘

= 𝑛log𝑏 𝑘

applying the prior observation once again.

29.1. Proof of the Master Theorem 293

https://en.wikipedia.org/wiki/Logarithm#Change_of_base

Foundations of Computer Science, Release 0.5

Applying both observations, we get

𝑇 = 𝑂(𝑛𝑑 · 𝑘log𝑏 𝑛 · (𝑏log𝑏 𝑛)−𝑑)

= 𝑂(𝑛𝑑 · 𝑛log𝑏 𝑘 · 𝑛−𝑑)

= 𝑂(𝑛log𝑏 𝑘)

Here, we cannot discard the base of the logarithm, as it appears in the exponent and so affects the value by
an exponential rather than a constant factor.

Thus, we have demonstrated all three cases of the master theorem. □

111 We’re being a bit sloppy here – the largest term in a sum doesn’t necessarily dominate, as can be seen with a divergent series such
as the harmonic series? ∑︀∞

𝑛=1 1/𝑛. However, what we have here is a geometric series? ∑︀𝑛
𝑖=0 𝑟

𝑖, which has the closed-form solution∑︀𝑛
𝑖=0 𝑟

𝑖 = (1 − 𝑟𝑛+1)/(1 − 𝑟) for 𝑟 ̸= 1. When 0 ≤ 𝑟 < 1 (and therefore 𝑟𝑛+1 < 1), this is bounded from above by the constant
1/(1− 𝑟), so the sum is 𝑂(1).

114 https://en.wikipedia.org/wiki/Logarithm#Change_of_base

We now proceed to prove the version with log factors.

Proof 318 We need to modify the reasoning in Proof 317 to account for the amount of work done in each sub-
problem. For a subproblem of size 𝑛/𝑏𝑖, we now have work

𝑂((
𝑛

𝑏𝑖
)𝑑 log𝑤

𝑛

𝑏𝑖
)

We consider the cases of 𝑘/𝑏𝑑 ≤ 1 and 𝑘/𝑏𝑑 > 1 separately.

• 𝑘/𝑏𝑑 ≤ 1: We compute an upper bound on the work as follows:

𝑂((
𝑛

𝑏𝑖
)𝑑 log𝑤

𝑛

𝑏𝑖
) = 𝑂(

𝑛𝑑

𝑏𝑖𝑑
· (log𝑤 𝑛− log𝑤 𝑏𝑖))

= 𝑏−𝑖𝑑 ·𝑂(𝑛𝑑 · (log𝑤 𝑛− log𝑤 𝑏𝑖))

= 𝑏−𝑖𝑑 ·𝑂(𝑛𝑑 log𝑤 𝑛)

since 𝑛𝑑 · (log𝑤 𝑛− log𝑤 𝑏𝑖) ≤ 𝑛𝑑 log𝑤 𝑛 for 𝑏 > 1, and we only need an upper bound for the asymptotics.
Then the work 𝑇𝑖 at level 𝑖 is

𝑇𝑖 =
𝑘𝑖

𝑏𝑖𝑑
·𝑂(𝑛𝑑 log𝑤 𝑛)

= (
𝑘

𝑏𝑑
)𝑖 ·𝑂(𝑛𝑑 log𝑤 𝑛)

Summing over all the levels, we get a total work

𝑇 =

log𝑏 𝑛∑︁
𝑖=0

𝑇𝑖

= 𝑂(𝑛𝑑 log𝑤 𝑛) ·
log𝑏 𝑛∑︁
𝑖=0

(
𝑘

𝑏𝑑
)𝑖

= 𝑂(𝑛𝑑 log𝑤 𝑛) ·
log𝑏 𝑛∑︁
𝑖=0

𝑟𝑖

= 𝑂(𝑛𝑑 log𝑤 𝑛 ·
log𝑏 𝑛∑︁
𝑖=0

𝑟𝑖)

29.1. Proof of the Master Theorem 294

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
https://en.wikipedia.org/wiki/Geometric_series

Foundations of Computer Science, Release 0.5

where 𝑟 = 𝑘/𝑏𝑑. When 𝑟 < 1, the initial term of the summation dominates as before, so we have

𝑇 = 𝑂(𝑛𝑑 log𝑤 𝑛 · (1 + 𝑟 + 𝑟2 + · · ·+ 𝑟log𝑏 𝑛))

= 𝑂(𝑛𝑑 log𝑤 𝑛)

When 𝑟 = 1, the terms all have equal size, also as before. Then

𝑇 = 𝑂(𝑛𝑑 log𝑤 𝑛 · (1 + 𝑟 + 𝑟2 + · · ·+ 𝑟log𝑏 𝑛))

= 𝑂(𝑛𝑑 log𝑤 𝑛 · (1 + log𝑏 𝑛))

= 𝑂(𝑛𝑑 log𝑤 𝑛 log𝑏 𝑛)

= 𝑂(𝑛𝑑 log𝑤 𝑛 log 𝑛)

= 𝑂(𝑛𝑑 log𝑤+1 𝑛)

As before, we drop the lower order term, as well as the base in log𝑏 𝑛 since it only differs by a constant
factor from log 𝑛.

• 𝑘/𝑏𝑑 > 1: We start by observing that since log𝑤 𝑛 is subpolynomial in 𝑛, it grows slower than any polyno-
mial in 𝑛. We have

𝑘

𝑏𝑑
> 1

or equivalently

log𝑏 𝑘 > 𝑑

0 < log𝑏 𝑘 − 𝑑

We choose a small exponent 𝜖 such that

0 < 𝜖 < log𝑏 𝑘 − 𝑑

For instance, we can choose 𝜖 = (log𝑏 𝑘 − 𝑑)/2. Then

log𝑏 𝑘 > 𝑑+ 𝜖

𝑘 > 𝑏𝑑+𝜖

𝑘

𝑏𝑑+𝜖
> 1

We also have

log𝑤 𝑛 ≤ 𝐶𝑛𝜖

for a sufficiently large constant 𝐶 and 𝑛 ≥ 1. For a subproblem of size 𝑛/𝑏𝑖, we now have work

𝑂((
𝑛

𝑏𝑖
)𝑑 log𝑤

𝑛

𝑏𝑖
) = 𝑂((

𝑛

𝑏𝑖
)𝑑 · 𝐶(

𝑛

𝑏𝑖
)𝜖)

= 𝑂(𝐶(
𝑛

𝑏𝑖
)𝑑+𝜖)

Then our work 𝑇𝑖 at level 𝑖 is

𝑇𝑖 = 𝑘𝑖 ·𝑂(𝐶(
𝑛

𝑏𝑖
)𝑑+𝜖)

29.1. Proof of the Master Theorem 295

Foundations of Computer Science, Release 0.5

The total work 𝑇 is

𝑇 =

log𝑏 𝑛∑︁
𝑖=0

(𝑘𝑖 ·𝑂(𝐶(
𝑛

𝑏𝑖
)𝑑+𝜖))

= 𝑂(

log𝑏 𝑛∑︁
𝑖=0

(𝑘𝑖 · 𝐶(
𝑛

𝑏𝑖
)𝑑+𝜖))

= 𝑂(𝐶𝑛𝑑+𝜖 ·
log𝑏 𝑛∑︁
𝑖=0

(𝑘𝑖 · (𝑏−𝑖)𝑑+𝜖))

= 𝑂(𝐶𝑛𝑑+𝜖 ·
log𝑏 𝑛∑︁
𝑖=0

(𝑘𝑖 · (𝑏𝑑+𝜖)−𝑖))

= 𝑂(𝐶𝑛𝑑+𝜖 ·
log𝑏 𝑛∑︁
𝑖=0

(
𝑘

𝑏𝑑+𝜖
)𝑖)

Since 𝑘/𝑏𝑑+𝜖 > 1, the last term in the summation dominates as in Proof 317, so we get

𝑇 = 𝑂(𝐶𝑛𝑑+𝜖 ·
log𝑏 𝑛∑︁
𝑖=0

(
𝑘

𝑏𝑑+𝜖
)𝑖)

= 𝑂(𝐶𝑛𝑑+𝜖 · (𝑘

𝑏𝑑+𝜖
)log𝑏 𝑛)

= 𝑂(𝐶𝑛𝑑+𝜖 · 𝑘log𝑏 𝑛 · (𝑏−(𝑑+𝜖))log𝑏 𝑛)

= 𝑂(𝐶𝑛𝑑+𝜖 · 𝑘log𝑏 𝑛 · (𝑏log𝑏 𝑛)−(𝑑+𝜖))

= 𝑂(𝐶𝑛𝑑+𝜖 · 𝑘log𝑏 𝑛 · 𝑛−(𝑑+𝜖))

= 𝑂(𝐶𝑘log𝑏 𝑛)

= 𝑂(𝐶𝑛log𝑏 𝑘)

In the last step, we applied the observation that 𝑘log𝑏 𝑛 = 𝑛log𝑏 𝑘. Folding the constant 𝐶 into the big-O
notation, we end up with

𝑇 = 𝑂(𝐶𝑘log𝑏 𝑛)

= 𝑂(𝑛log𝑏 𝑘)

as required.

29.2 Alternative Analysis of Quick Sort

We can conduct an alternative analysis of the quick-sort algorithm (page 219) by modifying the algorithm so that
all the randomness is fixed at the beginning. Given 𝑛 elements, we start by choosing a permutation of the numbers
{1, 2, . . . , 𝑛} uniformly at random to be the priorities of the elements. Then when choosing a pivot for a subset of the
elements, we pick the element that has the lowest priority over that subset. The following illustrates an execution of
this modified algorithm:

29.2. Alternative Analysis of Quick Sort 296

Foundations of Computer Science, Release 0.5

99 6 15 70 52 37 86 4 0
7 8 3 9 4 1 2 5 6

6 15 4 0
8 3 5 6

99 70 52 86
7 9 4 2

37
1

15
3

6 4 0
8 5 6

37
1

70 52
9 4

86
2

99
7

15
3

37
1

6
8

4
5

0
6

52
4

70
9

86
2

99
7

items
priorities

In the first step, the element 37 has the lowest priority, so it is chosen as the pivot. At the second level, the element 15
has the minimal priority in the first recursive call, while the element 86 has the lowest priority in the second call. At
the third level of the recursion, the element 4 has lowest priority over its subset, and similarly the element 52 for the
subset {70, 52}.

The full definition of the modified algorithm is as follows:

Algorithm 319 (Modified Quick Sort)

function ModifiedQuickSort(𝐴[1, . . . , 𝑛])
𝑃 = a uniformly random permutation of {1, . . . , 𝑛}
return PrioritizedSort(𝐴,𝑃)

function PrioritizedSort(𝐴[1, . . . , 𝑛], 𝑃 [1, . . . , 𝑛])
if 𝑛 = 1 then return 𝐴
𝑝 = index of the smallest element in 𝑃
(𝐿,𝑃𝐿,𝑅, 𝑃𝑅) = Partition(𝐴,𝑃, 𝑝)
return PrioritizedSort(𝐿,𝑃𝐿) +𝐴[𝑝]+ PrioritizedSort(𝑅,𝑃𝑅)

function Partition(𝐴[1, . . . , 𝑛], 𝑃 [1, . . . , 𝑛], 𝑝)
initialize empty arrays 𝐿,𝑃𝐿,𝑅, 𝑃𝑅
for 𝑖 = 1 to 𝑛 do

if 𝑖 ̸= 𝑝 and 𝐴[𝑖] < 𝐴[𝑝] then
𝐿 = 𝐿+𝐴[𝑖]
𝑃𝐿 = 𝑃𝐿+ 𝑃 [𝑖]

else if 𝑖 ̸= 𝑝 then
𝑅 = 𝑅+𝐴[𝑖]
𝑃𝑅 = 𝑃𝑅+ 𝑃 [𝑖]

return (𝐿,𝑃𝐿,𝑅, 𝑃𝑅)

This modified algorithm matches the behavior of the original randomized quick sort in two important ways:

29.2. Alternative Analysis of Quick Sort 297

Foundations of Computer Science, Release 0.5

1. In both algorithms, when a pivot is chosen among a subset consisting of 𝑚 elements, each element is chosen
with a uniform probability 1/𝑚. This is explicitly the case in the original version. In the modified version, the
priorities assigned to each of the 𝑚 elements are unique, and for any set of 𝑚 priorities, each element receives
the lowest priority in exactly 1/𝑚 of the permutations of those priorities.

2. The two algorithms compare elements in exactly the same situation – when partitioning the array, each element
is compared to the pivot. (The modified version also compares priorities to find the minimal, but we can just
ignore that in our analysis. Even if we did consider them, they just increase the number of comparisons by a
constant factor of two.)

Thus, the modified algorithm models the execution of the original algorithm in both the evolution of the recursion as
well as the element comparisons. We proceed to analyze the modified algorithm, and the result will equally apply to
the original.

For simplicity, we assume for the purposes of analysis that the initial array does not contain any duplicate elements. We
have defined our two versions of quick sort to be stable, meaning that they preserve the relative ordering of duplicate
elements. Thus, even when duplicates are present, the algorithm distinguishes between them, resulting in the same
behavior as if there were no duplicates.

Claim 320 Let𝐴 be an array of 𝑛 elements, and let 𝑆 be the result of sorting 𝐴. Let 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑆[𝑖]) be the priority
that was assigned to the element 𝑆[𝑖] in the modified quick-sort algorithm. Then 𝑆[𝑖] and 𝑆[𝑗] were compared by
the algorithm if and only if 𝑖 ̸= 𝑗, and one of the following holds:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑆[𝑖]) = min
𝑖≤𝑘≤𝑗

{𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑆[𝑘])}, or

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑆[𝑗]) = min
𝑖≤𝑘≤𝑗

{𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑆[𝑘])}

In other words, 𝑆[𝑖] and 𝑆[𝑗] are compared exactly when the lowest priority among the elements 𝑆[𝑖], 𝑆[𝑖 +
1], . . . , 𝑆[𝑗 − 1], 𝑆[𝑗] is that of either 𝑆[𝑖] or 𝑆[𝑗].

The claim above holds regardless of the original order of the elements in 𝐴. For example, take a look at the result from
our illustration of the modified algorithm above:

0 4 6 15 37 52 70 86 99
6 5 8 3 1 4 9 2 7

compared not compared

sorted result
priorities

As stated above, two elements are compared only in the partitioning step, and one of the two must be the pivot. Referring
to the execution above, we can see that 0 and 15 were compared in the second level of the recursion, whereas 52 and
99 were never compared to each other. Now consider a different initial ordering of the elements, but with the same
priorities assigned to each element:

29.2. Alternative Analysis of Quick Sort 298

Foundations of Computer Science, Release 0.5

52 37 99 6 4 86 70 15 0
4 1 7 8 5 2 9 3 6

6 4 15 0
8 5 3 6

52 99 86 70
4 7 2 9

37
1

15
3

6 4 0
8 5 6

37
1

52 70
4 9

86
2

99
7

15
3

37
1

6
8

4
5

0
6

52
4

70
9

86
2

99
7

items
priorities

The execution of the algorithm is essentially the same! It still picks 37 as the first pivot, since it has the lowest priority,
and forms the same partitions; the only possible difference is the ordering of a partition. Subsequent steps again pick
the same pivots, since they are finding the minimal priority over the same subset of elements and associated priorities.
Thus, given just the sorted set of elements and their priorities, we can determine which elements were compared as
stated in Claim 320, regardless of how they were initially ordered. We proceed to prove Claim 320:

Proof 321 First, we show that if the lowest priority among the elements 𝑆[𝑖], 𝑆[𝑖+1], . . . , 𝑆[𝑗−1], 𝑆[𝑗] is that of
either 𝑆[𝑖] or 𝑆[𝑗], then 𝑆[𝑖] and 𝑆[𝑗] are compared. Without loss of generality, suppose 𝑆[𝑖] is the element with
the lowest priority in this subset. This implies that no element in 𝑆[𝑖+1], . . . , 𝑆[𝑗] will be picked as a pivot prior
to 𝑆[𝑖] being picked. Thus, all pivots chosen by the algorithm before 𝑆[𝑖] must be either less than 𝑆[𝑖] or greater
than 𝑆[𝑗]. For each such pivot, the elements 𝑆[𝑖], 𝑆[𝑖+1], . . . , 𝑆[𝑗] are all placed in the same partition – they are
in sorted order, and if the pivot is less than 𝑆[𝑖], all of these elements are larger than the pivot, while if the pivot is
greater than 𝑆[𝑗], then all these elements are smaller than the pivot. Then when the algorithm chooses 𝑆[𝑖] as the
pivot, 𝑆[𝑗] is in the same subset of the array as 𝑆[𝑖] and thus will be compared to 𝑆[𝑖] in the partitioning step. The
same reasoning holds for when 𝑆[𝑗] has the lowest priority – it will eventually be chosen as the pivot, at which
point 𝑆[𝑖] will be in the same subset and will be compared to 𝑆[𝑗].

Next, we show that if the lowest priority among the elements 𝑆[𝑖], 𝑆[𝑖 + 1], . . . , 𝑆[𝑗 − 1], 𝑆[𝑗] is neither that of
𝑆[𝑖] nor of 𝑆[𝑗], then 𝑆[𝑖] and 𝑆[𝑗] are never compared. As long as the algorithm chooses pivots outside of the set
𝑆[𝑖], 𝑆[𝑖+1], . . . , 𝑆[𝑗], the two elements 𝑆[𝑖] and 𝑆[𝑗] remain in the same subset of the array without having been
compared to each other – they remain in the same subset since the pivots so far have been either less than both
𝑆[𝑖] and 𝑆[𝑗] or greater than both of them, and they have not been compared yet since neither has been chosen as
a pivot. When the algorithm first chooses a pivot from among the elements 𝑆[𝑖], 𝑆[𝑖+ 1], . . . , 𝑆[𝑗 − 1], 𝑆[𝑗], the
pivot it chooses must be one of 𝑆[𝑖 + 1], . . . , 𝑆[𝑗 − 1], since one of those elements has lower priority than both
𝑆[𝑖] and 𝑆[𝑗]. In the partitioning step for that pivot, 𝑆[𝑖] and 𝑆[𝑗] are placed into separate partitions, since 𝑆[𝑖] is
smaller than the pivot while 𝑆[𝑗] is larger than the pivot. Since 𝑆[𝑖] and 𝑆[𝑗] end up in separate partitions, they
cannot be compared in subsequent steps of the algorithm. □

We can now proceed to compute the expected number of comparisons. Let 𝑋𝑖𝑗 be an indicator random variable such
that 𝑋𝑖𝑗 = 1 if 𝑆[𝑖] and 𝑆[𝑗] were compared at some point in the algorithm, 𝑋𝑖𝑗 = 0 otherwise. From Claim 320, we

29.2. Alternative Analysis of Quick Sort 299

Foundations of Computer Science, Release 0.5

can conclude that

Pr[𝑋𝑖𝑗 = 1] =
2

𝑗 − 𝑖+ 1

This is because each of the 𝑗−1+1 elements in 𝑆[𝑖], 𝑆[𝑖+1], . . . , 𝑆[𝑗−1], 𝑆[𝑗] has equal chance of having the lowest
priority among those elements, and 𝑆[𝑖] and 𝑆[𝑗] are compared when one of those two elements has lowest priority
among this set.

We also observe that a pair of elements is compared at most once – they are compared once in the partitioning step
if they are in the same subarray and one of the two is chosen as a pivot, and after the partitioning step is over, the
pivot is never compared to anything else. Thus, the total number of comparisons 𝑋 is just the number of pairs that are
compared, out of the 𝑛(𝑛− 1)/2 distinct pairs:

𝑋 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑋𝑖𝑗

The rest of the analysis is as before (page 219), where we concluded that E[𝑋] ≤ 2𝑛 ln𝑛 = 𝑂(𝑛 log 𝑛). Since the
modified quick-sort algorithm models the behavior of the original randomized algorithm, this result also applies to the
latter.

29.3 Proof of the Simplified Multiplicative Chernoff Bounds

We previously showed (page 274) that the unsimplified Chernoff bounds

Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ (
𝑒𝛿

(1 + 𝛿)1+𝛿
)𝜇 for 𝛿 > 0

Pr[𝑋 ≤ (1− 𝛿)𝜇] ≤ (
𝑒−𝛿

(1− 𝛿)1−𝛿
)𝜇 for 0 < 𝛿 < 1

hold. We now demonstrate that the simplified bounds

Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ 𝑒−
𝛿2𝜇
2+𝛿 for 𝛿 > 0

Pr[𝑋 ≤ (1− 𝛿)𝜇] ≤ 𝑒−
𝛿2𝜇
2 for 0 < 𝛿 < 1

follow from the unsimplified bounds.

Proof 322 We first consider the upper-tail Chernoff bound. For 𝛿 > 0, we have

Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ (
𝑒𝛿

(1 + 𝛿)1+𝛿
)𝜇

= (
𝑒𝛿

(𝑒ln(1+𝛿))1+𝛿
)𝜇

= (
𝑒𝛿

𝑒(1+𝛿) ln(1+𝛿)
)𝜇

= (𝑒𝛿−(1+𝛿) ln(1+𝛿))𝜇

From a list of logarithmic identities115, we obtain the inequality

ln(1 + 𝑥) ≥ 2𝑥

2 + 𝑥

29.3. Proof of the Simplified Multiplicative Chernoff Bounds 300

https://en.wikipedia.org/wiki/List_of_logarithmic_identities#Inequalities

Foundations of Computer Science, Release 0.5

for 𝑥 > 0. This gives us

− ln(1 + 𝑥) ≤ − 2𝑥

2 + 𝑥

𝑒− ln(1+𝑥) ≤ 𝑒−
2𝑥
2+𝑥

Applying this to our Chernoff-bound expression with 𝑥 = 𝛿, we get

Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ (𝑒𝛿−(1+𝛿) ln(1+𝛿))𝜇

≤ (𝑒𝛿−(1+𝛿) 2𝛿
2+𝛿)𝜇

= (𝑒
𝛿(2+𝛿)−2𝛿(1+𝛿)

2+𝛿)𝜇

= (𝑒
2𝛿+𝛿2−2𝛿−2𝛿2

2+𝛿)𝜇

= (𝑒
−𝛿2

2+𝛿)𝜇

= 𝑒−
𝛿2𝜇
2+𝛿

resulting in the simplified upper-tail bound.

For the lower-tail Chernoff bound, we have for 0 < 𝛿 < 1:

Pr[𝑋 ≤ (1− 𝛿)𝜇] ≤ (
𝑒−𝛿

(1− 𝛿)1−𝛿
)𝜇

= (
𝑒𝛿

(𝑒ln(1−𝛿))1−𝛿
)𝜇

= (
𝑒−𝛿

𝑒(1−𝛿) ln(1−𝛿)
)𝜇

= (𝑒−𝛿−(1−𝛿) ln(1−𝛿))𝜇

The Taylor series for the natural logarithm116 gives us:

ln(1− 𝑥) = −𝑥− 𝑥2

2
− 𝑥3

3
− 𝑥4

4
− . . .

≥ −𝑥− 𝑥2

2
for 0 < 𝑥 < 1

− ln(1− 𝑥) ≤ 𝑥+
𝑥2

2

The second step follows since 𝑥3

3 + 𝑥4

4 + . . . is positive for 𝑥 > 0. Applying the result to our Chernoff-bound
expression with 𝑥 = 𝛿, we obtain

Pr[𝑋 ≤ (1− 𝛿)𝜇] ≤ (𝑒−𝛿−(1−𝛿) ln(1−𝛿))𝜇

≤ (𝑒−𝛿+(1−𝛿)(𝛿+ 𝛿2

2
))𝜇

= (𝑒−𝛿+𝛿−𝛿2+ 𝛿2

2
− 𝛿3

2)𝜇

= (𝑒−
𝛿2

2
− 𝛿3

2)𝜇

29.3. Proof of the Simplified Multiplicative Chernoff Bounds 301

https://en.wikipedia.org/wiki/Mercator_series

Foundations of Computer Science, Release 0.5

Since 𝛿 > 0, we have 𝛿3/2 > 0, and

−𝛿2

2
− 𝛿3

2
≤ −𝛿2

2

Thus,

Pr[𝑋 ≤ (1− 𝛿)𝜇] ≤ (𝑒−
𝛿2

2
− 𝛿3

2)𝜇

≤ (𝑒−
𝛿2

2)𝜇

= 𝑒−
𝛿2𝜇
2

completing our proof of the simplified lower-tail bound. □

115 https://en.wikipedia.org/wiki/List_of_logarithmic_identities#Inequalities
116 https://en.wikipedia.org/wiki/Mercator_series

29.4 Proof of the Upper-Tail Hoeffding’s Inequality

The upper-tail Hoeffding’s inequality we use (Theorem 259) states that for a sequence of independent indicator random
variables 𝑋1, . . . , 𝑋𝑛,

Pr

[︂
1

𝑛
𝑋 ≥ 𝑝+ 𝜀

]︂
≤ 𝑒−2𝜀2𝑛

where 𝑋 = 𝑋1 + · · ·+𝑋𝑛, E[𝑋𝑖] = 𝑝𝑖, and E
[︀
1
𝑛𝑋
]︀
= 1

𝑛

∑︀
𝑖 𝑝𝑖 = 𝑝. We proceed to prove a more general variant of

this bound:

Theorem 323 Let 𝑋 = 𝑋1 + · · ·+𝑋𝑛, where the 𝑋𝑖 are independent random variables such that 𝑋𝑖 ∈ [0, 1],
and the 𝑋𝑖 have expectation E[𝑋𝑖] = 𝑝𝑖, respectively. Let

𝑝 = E
[︂
1

𝑛
𝑋

]︂
=

1

𝑛

∑︁
𝑖

𝑝𝑖

Let 𝜀 > 0 be a deviation from the expectation. Then

Pr

[︂
1

𝑛
𝑋 ≥ 𝑝+ 𝜀

]︂
≤ exp(−2𝜀2𝑛)

(Note that exp(𝑥) is alternate notation for 𝑒𝑥.)

Here, we do not require that the 𝑋𝑖 are indicators, just that they are in the range [0, 1].

We proceed to prove Theorem 323. We have

Pr

[︂
1

𝑛
𝑋 ≥ 𝑝+ 𝜀

]︂
= Pr[𝑋 ≥ 𝑛(𝑝+ 𝜀)]

= Pr[𝑒𝑠𝑋 ≥ exp(𝑠𝑛(𝑝+ 𝜀))]

The latter step holds for all 𝑠 ≥ 0. The process of working with the random variable 𝑒𝑠𝑋 rather than 𝑋 directly is the
Chernoff bounding technique; the idea is that small deviations in 𝑋 turn into large deviations in 𝑒𝑠𝑋 , so that Markov’s
inequality (Theorem 227) produces a more useful result. We will choose an appropriate value of 𝑠 later. For any value

29.4. Proof of the Upper-Tail Hoeffding’s Inequality 302

Foundations of Computer Science, Release 0.5

of 𝑠, 𝑒𝑠𝑋 is nonnegative, so we can apply Markov’s inequality to obtain:

Pr[𝑒𝑠𝑋 ≥ exp(𝑠𝑛(𝑝+ 𝜀))] ≤ E[𝑒𝑠𝑋]/ exp(𝑠𝑛(𝑝+ 𝜀))

= exp(−𝑠𝑛(𝑝+ 𝜀)) · E[𝑒𝑠𝑋]

= exp(−𝑠𝑛(𝑝+ 𝜀)) · E[exp(𝑠(𝑋1 +𝑋2 + · · ·+𝑋𝑛))]

= exp(−𝑠𝑛(𝑝+ 𝜀)) · E[𝑒𝑠𝑋1𝑒𝑠𝑋2 . . . 𝑒𝑠𝑋𝑛]

= exp(−𝑠𝑛(𝑝+ 𝜀))
∏︁
𝑖

E[𝑒𝑠𝑋𝑖]

In the last step, we applied the fact that the 𝑋𝑖 are independent to conclude that the random variables 𝑒𝑠𝑋𝑖 are also
independent, and therefore by Lemma 250, the expectation of their product is the product of their expectations.

We now need to establish a bound on E[𝑒𝑠𝑋𝑖].

Lemma 324 Let 𝑋 be a random variable such that 𝑋 ∈ [0, 1] and E[𝑋] = 𝑝. Then

E[𝑒𝑠𝑋] ≤ exp(𝑠𝑝+ 𝑠2/8)

for all 𝑠 ∈ R.

Proof 325 We first observe that because 𝑒𝑠𝑥 is a convex function117, we can bound it from above on the interval
[0, 1] by the line that passes through the endpoints 1 and 𝑒𝑠:

1

20

0 1

𝑒!

𝑥𝑒! − 𝑥 + 1

𝑒!"

This line has slope 𝑒𝑠 − 1 and y-intercept 1, giving us 𝑥𝑒𝑠 − 𝑥+ 1. Thus,

𝑒𝑠𝑥 ≤ 𝑥𝑒𝑠 − 𝑥+ 1

29.4. Proof of the Upper-Tail Hoeffding’s Inequality 303

https://en.wikipedia.org/wiki/Convex_function

Foundations of Computer Science, Release 0.5

in the interval 0 ≤ 𝑥 ≤ 1. Then

E[𝑒𝑠𝑋] ≤ E[𝑋𝑒𝑠 −𝑋 + 1]

= (𝑒𝑠 − 1)E[𝑋] + 1

= 𝑝𝑒𝑠 − 𝑝+ 1

where the second step follows from linearity of expectation. We now have an upper bound on E[𝑒𝑠𝑋], but it is not
a convenient one – we would like it to be of the form 𝑒𝛼, so that we can better use it in proving Theorem 323, for
which we’ve already obtained a bound that contains an exponential. Using the fact that 𝑧 = 𝑒ln 𝑧 , we get

E[𝑒𝑠𝑋] ≤ 𝑝𝑒𝑠 − 𝑝+ 1

= exp(ln(𝑝𝑒𝑠 − 𝑝+ 1))

To further bound this expression, let

𝜑(𝑠) = ln(𝑝𝑒𝑠 − 𝑝+ 1)

Then finding an upper bound for 𝜑(𝑠) will in turn allow us to bound 𝑒𝜑(𝑠). By the Lagrange form of Taylor’s
theorem118, we get

𝜑(𝑠) = 𝜑(0) + 𝑠𝜑′(0) +
1

2
𝑠2𝜑′′(𝑣)

for some 𝑣 ∈ [0, 𝑠]. To differentiate 𝜑(𝑠), we let 𝑓(𝑠) = ln 𝑠 and 𝑔(𝑠) = 𝑝𝑒𝑠 − 𝑝+ 1, so that 𝜑(𝑠) = (𝑓 ∘ 𝑔)(𝑠).
Then by the chain rule119, we have120

𝜑′(𝑠) = (𝑓 ∘ 𝑔)′(𝑠)
= 𝑓 ′(𝑔(𝑠)) · 𝑔′(𝑠)

=
1

𝑔(𝑠)
· 𝑔′(𝑠) (since 𝑓 ′(𝑠) =

𝑑

𝑑𝑠
ln 𝑠 =

1

𝑠
)

=
1

𝑝𝑒𝑠 − 𝑝+ 1
· 𝑝𝑒𝑠

=
𝑝𝑒𝑠

𝑝𝑒𝑠 − 𝑝+ 1

To compute 𝜑′′(𝑠), we now let 𝑓(𝑠) = 𝑝𝑒𝑠, so that 𝜑′(𝑠) = 𝑓(𝑠)/𝑔(𝑠). Then by the quotient rule121, we get

𝜑′′(𝑠) =
𝑓 ′(𝑠)𝑔(𝑠)− 𝑓(𝑠)𝑔′(𝑠)

𝑔2(𝑠)

=
𝑝𝑒𝑠(𝑝𝑒𝑠 − 𝑝+ 1)− 𝑝𝑒𝑠𝑝𝑒𝑠

(𝑝𝑒𝑠 − 𝑝+ 1)2

=
𝑝𝑒𝑠

𝑝𝑒𝑠 − 𝑝+ 1
· (𝑝𝑒

𝑠 − 𝑝+ 1)− 𝑝𝑒𝑠

𝑝𝑒𝑠 − 𝑝+ 1

=
𝑝𝑒𝑠

𝑝𝑒𝑠 − 𝑝+ 1
(1− 𝑝𝑒𝑠

𝑝𝑒𝑠 − 𝑝+ 1
)

= 𝑡(1− 𝑡)

29.4. Proof of the Upper-Tail Hoeffding’s Inequality 304

https://en.wikipedia.org/wiki/Taylor%27s_theorem
https://en.wikipedia.org/wiki/Taylor%27s_theorem
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Quotient_rule

Foundations of Computer Science, Release 0.5

where 𝑡 = 𝑝𝑒𝑠

𝑝𝑒𝑠−𝑝+1 . Observe that 𝑡(1− 𝑡) is a parabola with a maximum at 𝑡 = 1
2 :

ℎ(𝑡) = 𝑡(1− 𝑡) = 𝑡− 𝑡2

ℎ′(𝑡) = 1− 2𝑡

ℎ′′(𝑡) = −2

Setting ℎ′(𝑡) = 1− 2𝑡 = 0, we get that 𝑡 = 1
2 is an extremum, and since the second derivative ℎ′′(12) is negative,

it is a maximum. Thus, we have

𝜑′′(𝑠) = 𝑡(1− 𝑡)

≤ 1

2
(1− 1

2
)

=
1

4

We can now plug everything into our result from applying Taylor’s theorem:

𝜑(𝑠) = 𝜑(0) + 𝑠𝜑′(0) +
1

2
𝑠2𝜑′′(𝑣)

= ln(𝑝− 𝑝+ 1) + 𝑠
𝑝

𝑝− 𝑝+ 1
+

1

2
𝑠2𝜑′′(𝑣)

= 𝑠𝑝+
1

2
𝑠2𝜑′′(𝑣)

≤ 𝑠𝑝+
1

2
𝑠2 · 1

4

= 𝑠𝑝+
𝑠2

8

Thus,

E[𝑒𝑠𝑋] ≤ 𝑒𝜑(𝑠)

≤ exp(𝑠𝑝+ 𝑠2/8)

as claimed. □
117 https://en.wikipedia.org/wiki/Convex_function
118 https://en.wikipedia.org/wiki/Taylor%27s_theorem
119 https://en.wikipedia.org/wiki/Chain_rule
120 The function 𝑔(𝑠) = 𝑝𝑒𝑠 − 𝑝+ 1 does not have any real roots for 𝑝 ∈ [0, 1], so it is safe to divide by it.
121 https://en.wikipedia.org/wiki/Quotient_rule

Continuing our proof of Theorem 323, we have

Pr[𝑒𝑠𝑋 ≥ exp(𝑠𝑛(𝑝+ 𝜀))] ≤ exp(−𝑠𝑛(𝑝+ 𝜀))
∏︁
𝑖

E[𝑒𝑠𝑋𝑖]

Applying Lemma 324, we get

Pr[𝑒𝑠𝑋 ≥ exp(𝑠𝑛(𝑝+ 𝜀))] ≤ exp(−𝑠𝑛(𝑝+ 𝜀))
∏︁
𝑖

E[𝑒𝑠𝑋𝑖]

≤ exp(−𝑠𝑛(𝑝+ 𝜀))
∏︁
𝑖

exp(𝑠𝑝𝑖 + 𝑠2/8)

= exp(−𝑠𝑛(𝑝+ 𝜀)) · exp(
∑︁
𝑖

(𝑠𝑝𝑖 + 𝑠2/8))

= exp(−𝑠𝑛(𝑝+ 𝜀)) · exp(𝑠𝑛𝑝+ 𝑠2𝑛/8)

= exp(−𝑠𝑛𝜀+ 𝑠2𝑛/8)

29.4. Proof of the Upper-Tail Hoeffding’s Inequality 305

Foundations of Computer Science, Release 0.5

We now choose 𝑠 to minimize the exponent 𝑟(𝑠) = −𝑠𝑛𝜀+ 𝑠2𝑛/8. We have:

𝑟(𝑠) = −𝑠𝑛𝜀+
𝑛

8
𝑠2

𝑟′(𝑠) = −𝑛𝜀+
𝑛

8
· 2𝑠 = −𝑛𝜀+

𝑛

4
𝑠

𝑟′′(𝑠) =
𝑛

4

We have another parabola, and since the second derivative is positive, we obtain a minimum for 𝑟(𝑠) at

𝑟′(𝑠) = −𝑛𝜀+
𝑛

4
𝑠 = 0

𝑠 = 4𝜀

Then

𝑟(4𝜀) = −4𝑛𝜀2 +
𝑛

8
· 16𝜀2

= −4𝑛𝜀2 + 2𝑛𝜀2

= −2𝑛𝜀2

Thus,

Pr

[︂
1

𝑛
𝑋 ≥ 𝑝+ 𝜀

]︂
≤ Pr[𝑒𝑠𝑋 ≥ exp(𝑠𝑛(𝑝+ 𝜀))]

≤ exp(−2𝑛𝜀2)

completing our proof of Theorem 323.

29.5 General Case of Hoeffding’s Inequality

We can further generalize Theorem 323 to the case where the individual random variables 𝑋𝑖 are in the range [𝑎𝑖, 𝑏𝑖].
We start by generalizing Lemma 324 to obtain Hoeffding’s lemma122.

Lemma 326 (Hoeffding’s Lemma) Let 𝑋 be a random variable such that 𝑋 ∈ [𝑎, 𝑏], where 𝑎 < 𝑏, and E[𝑋] =
𝑝. Then

E[𝑒𝑠𝑋] ≤ exp(𝑠𝑝+ 𝑠2(𝑎− 𝑏)2/8)

for all 𝑠 ∈ R.

Proof 327 Let 𝑋 ′ = 𝑋−𝑎
𝑏−𝑎 . Then 𝑋 ′ is a random variable such that 𝑋 ′ ∈ [0, 1], and

E[𝑋 ′] = E
[︂
𝑋 − 𝑎

𝑏− 𝑎

]︂
=

𝑝− 𝑎

𝑏− 𝑎

by linearity of expectation. Let 𝑝′ = 𝑝−𝑎
𝑏−𝑎 . Applying Lemma 324 to 𝑋 ′, we get

E[𝑒𝑠
′𝑋′

] ≤ exp(𝑠′𝑝′ + 𝑠′2/8)

122 https://en.wikipedia.org/wiki/Hoeffding%27s_lemma

29.5. General Case of Hoeffding’s Inequality 306

https://en.wikipedia.org/wiki/Hoeffding%27s_lemma

Foundations of Computer Science, Release 0.5

Now consider 𝑒𝑠𝑋 . We have 𝑋 = 𝑎+ (𝑏− 𝑎)𝑋 ′, so

E[𝑒𝑠𝑋] = E[exp(𝑠𝑎+ 𝑠(𝑏− 𝑎)𝑋 ′)]

= 𝑒𝑠𝑎 E[exp(𝑠(𝑏− 𝑎)𝑋 ′)]

Let 𝑠′ = 𝑠(𝑏− 𝑎). From the result above, we have

𝑒𝑠𝑎 E[exp(𝑠(𝑏− 𝑎)𝑋 ′)] = 𝑒𝑠𝑎 E[𝑒𝑠
′𝑋′

]

≤ 𝑒𝑠𝑎 exp(𝑠′𝑝′ + 𝑠′2/8)

= exp(𝑠𝑎+ 𝑠′𝑝′ + 𝑠′2/8)

Substituting 𝑝′ = 𝑝−𝑎
𝑏−𝑎 and 𝑠′ = 𝑠(𝑏− 𝑎), we obtain the following for the exponent:

𝑠𝑎+ 𝑠′𝑝′ +
1

8
𝑠′2 = 𝑠𝑎+ 𝑠(𝑏− 𝑎)

𝑝− 𝑎

𝑏− 𝑎
+

1

8
𝑠2(𝑏− 𝑎)2

= 𝑠𝑎+ 𝑠(𝑝− 𝑎) +
1

8
𝑠2(𝑏− 𝑎)2

= 𝑠𝑝+
1

8
𝑠2(𝑏− 𝑎)2

Thus,

E[𝑒𝑠
′𝑋′

] ≤ exp(𝑠𝑎+ 𝑠′𝑝′ + 𝑠′2/8)

= exp(𝑠𝑝+ 𝑠2(𝑏− 𝑎)2/8)

as claimed. □

We can now derive the general case of Hoeffding’s inequality123.

Theorem 328 (Hoeffding’s Inequality – General Case) Let𝑋 = 𝑋1+· · ·+𝑋𝑛, where the𝑋𝑖 are independent
random variables such that 𝑋𝑖 ∈ [𝑎𝑖, 𝑏𝑖] for 𝑎𝑖 < 𝑏𝑖 and E[𝑋𝑖] = 𝑝𝑖. Let

𝑝 = E
[︂
1

𝑛
𝑋

]︂
=

1

𝑛

∑︁
𝑖

𝑝𝑖

Let 𝜀 > 0 be a deviation from the expectation. Then

Pr

[︂
1

𝑛
𝑋 ≥ 𝑝+ 𝜀

]︂
≤ exp

(︂
− 2𝑛2𝜀2∑︀

𝑖(𝑏𝑖 − 𝑎𝑖)2

)︂

123 https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

29.5. General Case of Hoeffding’s Inequality 307

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

Foundations of Computer Science, Release 0.5

Proof 329 We proceed as in the proof of Theorem 323 to obtain

Pr

[︂
1

𝑛
𝑋 ≥ 𝑝+ 𝜀

]︂
= Pr[𝑋 ≥ 𝑛(𝑝+ 𝜀)]

= Pr[𝑒𝑠𝑋 ≥ exp(𝑠𝑛(𝑝+ 𝜀))]

≤ E[𝑒𝑠𝑋]/ exp(𝑠𝑛(𝑝+ 𝜀)) (Markov’s inequality)

= exp(−𝑠𝑛(𝑝+ 𝜀)) · E[𝑒𝑠𝑋]

= exp(−𝑠𝑛(𝑝+ 𝜀)) · E[exp(𝑠(𝑋1 +𝑋2 + · · ·+𝑋𝑛))]

= exp(−𝑠𝑛(𝑝+ 𝜀)) · E[𝑒𝑠𝑋1𝑒𝑠𝑋2 . . . 𝑒𝑠𝑋𝑛]

= exp(−𝑠𝑛(𝑝+ 𝜀))
∏︁
𝑖

E[𝑒𝑠𝑋𝑖] (independence of the 𝑋𝑖)

Applying Hoeffding’s lemma (Lemma 326), we obtain

exp(−𝑠𝑛(𝑝+ 𝜀))
∏︁
𝑖

E[𝑒𝑠𝑋𝑖] ≤ exp(−𝑠𝑛(𝑝+ 𝜀))
∏︁
𝑖

exp(𝑠𝑝𝑖 + 𝑠2(𝑏𝑖 − 𝑎𝑖)
2/8)

= exp(−𝑠𝑛(𝑝+ 𝜀)) · exp
(︃∑︁

𝑖

(𝑠𝑝𝑖 + 𝑠2(𝑏𝑖 − 𝑎𝑖)
2/8)

)︃

= exp(−𝑠𝑛(𝑝+ 𝜀)) · exp
(︃
𝑠𝑛𝑝+

𝑠2

8

∑︁
𝑖

(𝑏𝑖 − 𝑎𝑖)
2

)︃

= exp

(︃
−𝑠𝑛𝜀+

𝑠2

8

∑︁
𝑖

(𝑏𝑖 − 𝑎𝑖)
2

)︃

We choose 𝑠 to minimize the exponent 𝑟(𝑠):

𝑟(𝑠) = −𝑠𝑛𝜀+
𝑠2

8

∑︁
𝑖

(𝑏𝑖 − 𝑎𝑖)
2

𝑟′(𝑠) = −𝑛𝜀+
𝑠

4

∑︁
𝑖

(𝑏𝑖 − 𝑎𝑖)
2

𝑟′′(𝑠) =
1

4

∑︁
𝑖

(𝑏𝑖 − 𝑎𝑖)
2

Since 𝑎𝑖 < 𝑏𝑖, we have 𝑏𝑖 − 𝑎𝑖 > 0 for all 𝑖, so that 𝑟′′(𝑠) is positive. Thus, we obtain a minimum for 𝑟(𝑠) when
𝑟′(𝑠) = 0:

𝑟′(𝑠) = −𝑛𝜀+
𝑠

4

∑︁
𝑖

(𝑏𝑖 − 𝑎𝑖)
2 = 0

𝑠 =
4𝑛𝜀∑︀

𝑖(𝑏𝑖 − 𝑎𝑖)2

Then

𝑟(
4𝑛𝜀∑︀

𝑖(𝑏𝑖 − 𝑎𝑖)2
) = −𝑛𝜀

4𝑛𝜀∑︀
𝑖(𝑏𝑖 − 𝑎𝑖)2

+
16𝑛2𝜀2

(
∑︀

𝑖(𝑏𝑖 − 𝑎𝑖)2)2
· 1
8

∑︁
𝑖

(𝑏𝑖 − 𝑎𝑖)
2

= − 4𝑛2𝜀2∑︀
𝑖(𝑏𝑖 − 𝑎𝑖)2

+
2𝑛2𝜀2∑︀

𝑖(𝑏𝑖 − 𝑎𝑖)2

= − 2𝑛2𝜀2∑︀
𝑖(𝑏𝑖 − 𝑎𝑖)2

29.5. General Case of Hoeffding’s Inequality 308

Foundations of Computer Science, Release 0.5

Thus,

Pr

[︂
1

𝑛
𝑋 ≥ 𝑝+ 𝜀

]︂
≤ Pr[𝑒𝑠𝑋 ≥ exp(𝑠𝑛(𝑝+ 𝜀))]

≤ exp

(︂
− 2𝑛2𝜀2∑︀

𝑖(𝑏𝑖 − 𝑎𝑖)2

)︂
completing our proof of the general case of Hoeffding’s inequality. □

29.5. General Case of Hoeffding’s Inequality 309

Part VIII

About

310

CHAPTER

THIRTY

ABOUT

This text was originally written for EECS 376, the Foundations of Computer Science course at the University of Michi-
gan, by Amir Kamil124 in Fall 2020. This is version 0.5 of the text.

• Contributions: Chris Peikert125, Thatchaphol Saranurak126

This text is licensed under the Creative Commons Attribution-ShareAlike 4.0 International license127.

Please report bugs and other issues here128.

124 https://amirkamil.com
125 https://web.eecs.umich.edu/~cpeikert/
126 https://sites.google.com/site/thsaranurak/
127 https://creativecommons.org/licenses/by-sa/4.0/
128 https://github.com/eecs376/issues/issues

311

https://amirkamil.com
https://web.eecs.umich.edu/~cpeikert/
https://sites.google.com/site/thsaranurak/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/eecs376/issues/issues

INDEX

Symbols
"no larger than"

injective, 92
0-1 knapsack problem, see Knapsack problem
0-1 random variable, see Indicator random variable
3CNF, 169, 175
exact, 214

3SAT, 169

A
Abstract data type, 222
Abstraction, 3
Accept, 50, 63, 85
Accept state, 53
Acceptance problem for TMs, 102
Adversary, 214
AKS primality test, 271
Algorithms as games, 214
All-pairs shortest path, 3
Floyd-Warshall algorithm, 40

All-pairs shortest paths, 38
Alpha approximation, see Approximation
Alphabet, 48

input alphabet, 62
tape alphabet, 62

Alternation, 124
dovetailing, 128

Amplification, 228, 282, 287
one-sided, 282
two-sided, 287

Approximation, 192, 201
approximation ratio, 192
benchmark, 195
in expectation, 214
𝛼-approximation, 192
𝛼-approximation algorithm, 192

Asymmetric encryption, 256
Authentication, 242, 260
Automata, 50
Chomsky hierarchy, 51
finite automata, 50, 51, 53
linear-bounded automata, 51

pushdown automata, 51
state machine, 50
Turing machine, 51, 61

Automaton, see Automata
Averaging argument, 210

B
Baby-step giant-step, 255
Backtracking, see Dynamic programming, 30
Barber paradox, 100
Benchmark, see Approximation, 195
Big data, 236
Binary search tree, 222
Binomial distribution, 234, 279
Black box, 106
Boolean formula, 149, 201

3CNF, 169, 175
3SAT (language), 169
assignment, 149
clause, 169, 175
CNF, 169, 175
conjunctive normal form, 169, 175
conversion to 3CNF, 170
equivalence to circuit, 160
exact 3CNF, 214
literal, 149
MAX-E3SAT, 214
operator, 149
SAT (language), 150
satisfiability, 149, 150
satisfying assignment, 149, 175
variable, 149

BPP (complexity class), 261, 283
BQP (complexity class), 261

C
Cardinality, 92, 93

countable, 93
countably infinite, 93
diagonalization, 97
of the integers Z, 93
of the pairs of naturals N×N, 94

312

Foundations of Computer Science, Release 0.5

of the positive rationals Q+, 94
of the rationals Q, 95
of the reals R, 95
of the set of finite binary strings

{0,1}*, 97
of the set of languages, 97
of the set of machines, 97
uncountable, 95

Carmichael number, 271, 272
Cell, see Turing machine, 61
Certificate, 143, 261
Chain rule, 304
Chebyshev's inequality, 229, 232
Chernoff bounding technique, 275, 302
Chernoff bounds, 229, 274, 280
Chernoff-Hoeffding bounds, 234
multiplicative, 229, 274
proof, 275
proof of simplified, 300

Chernoff-Hoeffding bounds, see Hoeffding's in-
equality

Chomsky hierarchy, 51
Church-Turing thesis, 84

extended, 139, 261
Ciphertext, 242
Circuit satisfiability, 160
Classical computer, 261
Clause, 169, 175
Clique, 174, 181

CLIQUE (language), 188
search algorithm, 189

CLIQUE (language), 174, 181
Closed, 89

decidable languages, 89
recognizable languages, 124
two-sided error (BPP), 283

Closest-pair problem, 19
1D algorithm, 20
2D algorithm, 24
𝛿-strip, 22

CNF, see Conjunctive normal form
Co-recognizable, 126
Code, 100
Combined-greedy algorithm, see Knapsack problem,

200
Complement, 47
Complete graph, 44, 141, 181
Completeness, 134
Complexity
space, 4, 137
time, 4, 137

Complexity class, 137
BPP, 261, 283
BQP, 261

coNP, 286
coRP, 282
DTIME(t(n)), 137
NP, 145
NPI, 261
P, 139
R, 137
RE, 137
RP, 282
ZPP, 284

Compression, 268
by program, 268
lossless, 268
lossy, 268

Computable function, 267
Computational security, 242, 261
Computational step, 62
Concentration bounds, 229, 234, 274
Chernoff bounds, 229, 274
Hoeffding's inequality, 234

Conditional probability, 216
Conditional security, 242
Confidence level, 236
Confidentiality, 242, 260
Configuration, 116, 152
Congruence, 243
Conjunctive normal form, see Boolean formula, 169,

175
conversion to 3CNF, 170

Connected, 41
minimally connected, 41

coNP, 286
Context-free language, 51
Context-sensitive language, 51
Convex function, 303
Cook-Levin theorem, 151, 152, 165
3SAT version, 172

Coprime, 4, 246, 256, 258
coRP (complexity class), 282
Countable, 93
Countably infinite, 93
Cover
set, 182
vertex, 177

Crossing edge
maximum cut, 196
vertex cover, 181

Cryptography, 242
asymmetric, 256
ciphertext, 242
Diffie-Hellman, 253, 254, 256, 260
Diffie-Hellman assumption, 254, 259
discrete logarithm assumption, 255, 259
ElGamal, 260

Index 313

Foundations of Computer Science, Release 0.5

factorization hardness assumption, 259
Kerckhoff's principle, 242, 254
key, 242
key exchange, 253, 256
one-time pad, 248
padding, 249, 261
plaintext, 242
post-quantum, 261
private key, 253, 256, 258, 260
public key, 253, 256, 258, 260
public-key cryptosystem, 256
RSA, 256
RSA assumption, 259
RSA encryption, 258
RSA signature, 260
spoofing, 261
statistical attack, 250
symmetric, 253, 256

Cut, see Maximum cut, 196
Cycle, 41

D
De Morgan's laws, 149, 161
Decidable, 85

efficiently decidable, 139
Decide, 50, 85
Decider, 85
Decision problem, 4, 47
Degree, 194
Delta strip, see Closest-pair problem
Derandomized, 216
Deterministic, 203
Deterministic finite automata, see Finite au-

tomata
DFA, see Finite automata
Diagonalization, 97
Diffie-Hellman assumption, 254, 259
Diffie-Hellman key exchange, 253, 254, 256, 260
Discrete logarithm, 255, 260, 261

baby-step giant-step, 255
Shor's algorithm, 261

Discrete logarithm assumption, 255, 259
Divide and conquer, 13
Double-cover algorithm, see Vertex cover, 194
Dovetailing, 128
DTIME, 137
Dynamic programming, 25
backtracking, 30
bottom-up table, 26
top-down memoized, 26
top-down recursive, 25

E
Efficiently decidable, 139

Efficiently verifiable, 143
ElGamal encryption, 260
Euclid's algorithm, 5

extended, 246
potential function, 10
time complexity, 11

Euclid's division lemma, 243
Euclid's lemma, 257, 273
Euler's totient function, 254
Event, 204
Exact 3CNF, 214
Exact problem, 188
Expectation, 209

conditional, 216
linearity of expectation, 212

Expected value, 209
Extended Church-Turing thesis, 139, 261
Extended Euclidean algorithm, 246
Extended Fermat's little theorem, 271

F
Factorization hardness assumption, 259
False negative, 282
False positive, 282
Fan-out, 160
Fast modular exponentiation, 245

bottom-up, 246
top-down, 245

Fermat primality test, 259, 271
Fermat's little theorem, 256

extended, 271
proof, 257

Final state, see Turing machine, 62
Finite acceptor, see Finite automata
Finite automata, 50, 51, 53

formal definition, 57
language of, 58

Finite-state automata, see Finite automata
Finite-state machine, see Finite automata
Flipping game, 7
Floyd-Warshall algorithm, 3, 40
Frequency table, 250
Fully connected, 141
Function, 92

partial, 92
total, 92

Functional problem, 188, 267
equivalence with decision, 267

Fundamental theorem of arithmetic, 272

G
Gadget, 178
GCD, see Greatest common divisor
Generator, 253

Index 314

Foundations of Computer Science, Release 0.5

Geometric distribution, 270, 285
Greatest common divisor, 4

Euclid's algorithm, 5
Greedy algorithm, 41

H
Halt, 62
Halting problem, 104
Hamiltonian cycle, 184
HAMCYCLE (language), 185

Hamiltonian path, 184
HAMPATH (language), 185

Hard-code, 109
Head, see Turing machine, 61
Heuristics, 201
Hoeffding's inequality, 229, 234, 237, 239, 287

general case, 306, 307
Hoeffding's lemma, 306
proof, 302

Hoeffding's lemma, 306

I
i.i.d., see Independent identically distributed
In place, 219
Incomplete, 135
Independent identically distributed, 233
Independent random variables, 207
Independent set, 181

INDEPENDENT-SET (language), 181
Indicator random variable, 207
Induced subgraph, 174
Information-theoretic security, 242
Initial state, see Turing machine, 62
Injective, 92
Integer factorization, 259, 261
Shor's algorithm, 261

Integer multiplication, 16
Karatsuba algorithm, 18

Integrity, 242, 260
Intermediate vertex, 39
Interpreter, 102
Inverse, 246

J
Job scheduling, 238
Joint probability, 205

K
Karatsuba algorithm, 18
Karp reduction, 162
Kerckhoff's principle, 242, 254
Key, 242

private, 253, 256, 258, 260

public, 253, 256, 258, 260
Key exchange, 253, 256
Kleene star, 49
Knapsack problem, 199, 201

combined-greedy algorithm, 200
fractional knapsack problem, 201
relatively greedy algorithm, 199
single-greedy algorithm, 200

Kolmogorov complexity, 268
Kruskal's algorithm, see Minimum spanning tree, 42

proof, 44

L
L (subscripted language)

{𝜀}, 130
3, 113
A376, 265
ACC, 102
DEC, 266
EQ, 111
EVEN, 113
FOO, 110
HALT, 104
HATES-EVENS, 129
L376, 266
NO-FOO, 126
NO-FOO-BAR, 127
QTILE, 115
R376, 266
REJ, 129, 266
SmallTM, 266
TILE, 115
WritesOne, 133
Σ*, 265
𝜀-ACC, 113
𝜀-HALT, 108
∅, 111

Language, 4, 47, 49
context-free, 51
context-sensitive, 51
of a machine, 58, 85
recursively-enumerable, 51
regular, 51

Las Vegas algorithm, 284
Law of large numbers, 229
LCS, see Longest common subsequence
Library, 106
Limited budget, 142, 174, 178, 188, 196
Linear-bounded automata, 51
Linearity of expectation, 212
LIS, see Longest increasing subsequence
Literal, see Boolean formula, 149
Load balancing, 238
Local-search algorithm, see Maximum cut, 197

Index 315

Foundations of Computer Science, Release 0.5

Logic gate, 160
LONG-PATH (language), 186
Longest common subsequence, 33
Longest increasing subsequence, 31
Loop, 63, 85
Lossless compression, 268
Lossy compression, 268

M
M. C. Escher, 113
Mapping reduction
polynomial-time, 162

Margin of error, 236
Markov's inequality, 211, 275, 302
reverse Markov's inequality, 211

Master theorem, 14
non-master-theorem recurrences, 263
proof, 291
substitution, 263
with log factors, 15

Max-E3SAT, 214
derandomized algorithm, 216

Maximally acyclic, 41
Maximization problem, 188, 192
Maximum clique, see Clique
Maximum cut, 196, 201

local-search algorithm, 197
MAXCUT (language), 196
randomized algorithm, 218

MAZE, 145
Memoization, see Dynamic programming, 26
Merge sort, 13, 219
Method of conditional probabilities, 216
Miller-Rabin primality test, 272
Minimally connected, 41
Minimization problem, 188, 192
Minimum spanning tree, 41
definition, 41
Kruskal's algorithm, 42
proof of Kruskal's algorithm, 44

Minimum vertex cover, see Vertex cover
Modular arithmetic, 243

congruence, 243
modulus, 243
reduction, 243

Modular exponentiation, 245, 254, 259, 272
Modular inverse, 246
Modulus, 243
Monte Carlo algorithm, 228, 284
Monte Carlo method, 228
MST, see Minimum spanning tree
Multiplication, see Integer multiplication

N
NP (complexity class), 145

relationship with P, 147
NP-Complete, 165, 261
NP-Hard, 164
NP-Intermediate, 261
NPI (complexity class), 261

O
One-sided-error randomized algorithm, 282

amplification, 282
One-time pad, 248

reuse, 250
One-to-one, 92
Optimal substructure, see Dynamic programming,

25
Optimization problem, 188, 192
Oracle, 106
Overlapping subproblems, see Dynamic program-

ming, 25

P
P (complexity class), 139

relationship with NP, 147
Padding, 249, 261
Pair-wise disjoint edges, 195
PALINDROME, 137
Partial function, 92
Partition, 196
Penrose tiling, 114
Pi (estimating its value), 228
Pivot, 219
Plaintext, 242
Planar graph, 201
Polling, 236

confidence level, 236
margin of error, 236
sampling theorem, 238, 240
with Chernoff bounds, 280
with Hoeffding's inequality, 237

Poly-time reduction, see Polynomial-time reduction
Polynomial composition, 138
Polynomial hierarchy, 287
Polynomial identity testing, 274
Polynomial-time mapping reduction, 162
Polynomial-time reduction, 161
Post-quantum cryptography, 261
Potential function, 9

for Euclid's algorithm, 10
Potential method, 9
Predicate, 47
Primality testing, 259, 270

AKS primality test, 271

Index 316

Foundations of Computer Science, Release 0.5

Carmichael number, 271, 272
Fermat primality test, 259, 271
Miller-Rabin primality test, 272
PRIMES (language), 270
pseudoprime, 272
PSEUDOPRIMES (language), 272

Prime factorization, 259, 272
Prime number theorem, 270
Principle of optimality, 25
Privacy, 242, 260
Private key, 253, 256, 258, 260
Probabilistic, 203
Probability
Chebyshev's inequality, 229, 232
Chernoff bounds, 229, 274
conditional, 216
conditional expectation, 216
event, 204
expectation, 209
expected value, 209
Hoeffding's inequality, 234
independent identically distributed, 233
independent random variables, 207
indicator random variable, 207
joint probability, 205
law of large numbers, 229
linearity of expectation, 212
outcome, 204
probability distribution, 208
probability space, 204
random variable, 207
sample space, 204
sampling theorem, 238, 240
Standard deviation, 230
union bound, 206, 238
Variance, 229

Probability space, 204
Program analysis, 133
Property, 131
Pseudocode, 3, 267
Pseudopolynomial time, 199
Pseudoprime, 272
Public key, 253, 256, 258, 260
Public-key cryptosystem, 256
Pumping lemma, 60
Pushdown automata, 51

Q
Quadrant, 115, 228
Quantum computer, 261
Quantum Turing maching, 261
Quick sort, 219, 296
analysis, 220, 296

Quotient rule, 304

R
R (complexity class), 137
Random variable, 207
Randomized, 203
Randomness, 203
RE (complexity class), 137
Recognizable, 123
Recognize, 123
Recursively-enumerable language, see RE (com-

plexity class), see Recognizable, 51
Reduction, 106

modular arithmetic, 243
polynomial-time, 161
Turing, 106

Regular language, 51
Reject, 50, 63, 85
Relatively greedy algorithm, see Knapsack prob-

lem, 199
Relatively prime, 272
Reverse Markov's inequality, 211
Rice's theorem, 132

program analysis, 133
Rock-paper-scissors, 203
RP (complexity class), 282
RSA, 256

ecryption, 258
RSA assumption, 259
RSA signature, 260

S
Sample space, 204
Sampling theorem, 238, 240
SAT, see Boolean formula, 150, 188
Satisfiability, see Boolean formula, 149, 150

circuit, 160
Search problem, 188
Self-hosting, 101
Semantic property, 131

trivial, 131
Set cover, 182
SET-COVER (language), 182

Shor's algorithm, 261
Shortest path, see All-pairs shortest path, 3
Shortest paths, 38
Signature, 260
Simple path, 39
Simulate, 102
Single-cover algorithm, see Vertex cover, 193
Single-greedy algorithm, see Knapsack problem,

200
Skip list, 223
Sorting algorithm
in place, 219
merge sort, 13, 219

Index 317

Foundations of Computer Science, Release 0.5

quick sort, 219, 296
stable, 298

Soundness, 134
Space complexity, 4, 137
Spanning tree, see Minimum spanning tree
Spoofing, 261
Standard deviation, 230
State, see Finite automata, 50, 53, see Turing machine,

61
final, 62
initial, 62

State diagram, 64
State machine, 50
Statistical attack, 250
String, 48
Subroutine, 102
Subsequence, 33
Substitution, 263
Symmetric encryption, 253, 256

T
Tableau, see Cook-Levin theorem, 152
Tape, see Turing machine, 61
Taylor's theorem, 304
Tiling, 113
non-periodic, 114
Penrose tiling, 114
Wang tile, 115

Time complexity, 4, 137
Total function, 92
Transition, 50, 53
Transition function, 57, see Turing machine, 62
Traveling salesperson problem, 3, 141, 201

definition, 141
limited-budget version, 142
TSP (language), 146, 186

Tree, 41
definitions, 41
minimum spanning tree, 41

Trivial semantic property, 131
TSP, see Traveling salesperson problem
Turing completeness, 91
Turing machine, 4, 51, 61

equivalence of models, 89
formal definition, 61
language of, 85
quantum, 261
transition function, 62
two-tape model, 89
universal, 102

Turing reduction, 106
Two-sided-error randomized algorithm, 261, 283

amplification, 287
Type, 47

Type system, 135

U
Uncompressible, 268
Uncomputable, 268
Unconditional security, 242
Uncountable, 95
Undecidable, 99
Union bound, 206, 238
Universal gate set, 160
Universal Turing machine, 102
language of, 102

Unrecognizable, 99, 123
Unsound, 135

V
Variance, 229
Verifiable, 140

efficiently verifiable, 143
verifier, 143

Verifier, 143
Vertex cover, 177, 188

approximation, 193
double-cover algorithm, 194
greedy algorithm, 194
search algorithm, 190
single-cover algorithm, 193
VERTEX-COVER (language), 178

W
Wang tile, 115
Weighted Task Selection, 28
Window, see Cook-Levin theorem, 156
WTS, see Weighted Task Selection

Z
ZPP (complexity class), 284

Index 318

	I Algorithms
	Introduction
	Text Objectives
	Tools for Abstraction
	The First Algorithm: Euclid’s GCD

	The Potential Method
	A Potential Function for Euclid’s Algorithm

	Divide and Conquer
	The Master Theorem
	Master Theorem with Log Factors

	Integer Multiplication
	The Karatsuba Algorithm

	The Closest-Pair Problem

	Dynamic Programming
	Implementation Strategies
	Weighted Task Selection
	Longest Increasing Subsequence
	Longest Common Subsequence
	All-Pairs Shortest Paths

	Greedy Algorithms

	II Computability
	Introduction to Computability
	Formal Languages
	Overview of Automata

	Finite Automata
	Formal Definition

	Turing Machines
	The Language of a Turing Machine
	Decidable Languages
	Equivalent Models

	Diagonalization
	Countable Sets
	Uncountable Sets
	The Existence of an Undecidable Language

	“Natural” Undecidable Problems
	Code as Input
	The Barber Language
	The Acceptance Language and Simulation
	The Halting Problem

	Turing Reductions
	The Halts-on-Empty Problem
	More Undecidable Languages and Turing Reductions
	Wang Tiling

	Recognizability
	Unrecognizable Languages
	Dovetailing

	Rice’s Theorem
	Rice’s Theorem and Program Analysis

	III Complexity
	Introduction to Complexity
	Polynomial Time and the Class ¶
	Examples of Efficient Verification
	Efficient Verifiers and the Class NP
	Discussion of Completeness and Soundness
	Discussion of Efficiency
	The Class NP

	P Versus NP

	Satisfiability and the Cook-Levin Theorem
	Proof of the Cook-Levin Theorem
	Configurations and Tableaus
	Constructing the Formula
	Cell Consistency
	Accepting Tableau
	Starting Configuration
	Transitions

	Conclusion

	NP-Completeness
	Polynomial-Time Mapping Reductions
	NP-Hardness and NP-Completeness
	Resolving ¶ versus NP

	More NP-Complete Problems
	3SAT
	Clique
	Vertex Cover
	Set Cover
	Hamiltonian Cycle
	Concluding Remarks

	Search Problems and Search-to-Decision Reductions
	Approximation Algorithms
	Minimum Vertex Cover
	Maximum Cut
	Knapsack
	Other Approaches to NP-Hard Problems

	IV Randomness
	Randomized Algorithms
	Review of Probability
	Probability Spaces and Events
	Random Variables
	Expectation
	Analyzing Rock-Paper-Scissors

	Randomized Approximation Algorithms
	Quick Sort
	Skip Lists

	Monte Carlo Methods and Concentration Bounds
	Variance and Chebyshev’s Inequality
	Hoeffding’s Inequality
	Polling
	Analysis with Hoeffding’s Inequality

	Load Balancing

	V Cryptography
	Introduction to Cryptography
	Review of Modular Arithmetic
	Fast Modular Exponentiation
	Division and Modular Inverses

	One-time Pad

	Diffie-Hellman Key Exchange
	RSA
	RSA Signatures
	Quantum Computers and Cryptography

	VI Supplemental Material
	Supplemental: Algorithms
	Non-master-theorem Recurrences

	Supplemental: Computability
	Applying Rice’s Theorem
	Computable Functions and Kolmogorov Complexity

	Supplemental: Randomness
	Primality Testing
	The Miller-Rabin Test

	Multiplicative Chernoff Bounds
	Polling Analysis with Chernoff Bounds

	Probabilistic Complexity Classes
	Amplification for Two-Sided-Error Algorithms

	VII Appendix
	Appendix
	Proof of the Master Theorem
	Alternative Analysis of Quick Sort
	Proof of the Simplified Multiplicative Chernoff Bounds
	Proof of the Upper-Tail Hoeffding’s Inequality
	General Case of Hoeffding’s Inequality

	VIII About
	About
	Index

